High-Dimensional Manifold Geostatistics

Chintan Dalal

Department of Computer Science, Rutgers University 18th December, 2017

Thesis Committee:

- Prof. Dimitris Metaxas (Chair)
- Prof. Vladimir Pavlovic
- Prof. Kostas Bekris
- Prof. Jonathan Stroud (Georgetown University)
- Prof. Douglas Nychka (National Center for Atmospheric Research, University of Colorado Boulder)

Sea-Level Changes

Observed Sea-Level Trends

153 million livesaffected by2100

Scientific Goal:

Improve the estimates of sea-level trends using:

2

- 1. Spatial information
- 2. Multiple sources of datasets

Kopp et al 2017; National Climate Assessment (2014)

Precipitation Changes

Projected Change in Heavy Precipitation Events

Scientific Goal:

- 1. Compare Existing Earth System Models
- 2. Emulate Future Climate Scenarios

Climate Data Science

Our Approach

Develop geostatistical models by exploring high-dimensional geometric structures on a manifold

Talk outline

- Scientific Goal 1: Improve estimates of sea-level trends using spatial information
 - Regression Models
 - Simulation Study
 - Sea-Level Datasets Spatial (Dim = 2), Spatial-temporal (Dim = 3)
- Scientific Goal 2: Inference from multiple sources of datasets
 - Data-Fusion Model
 - Multiple Sea-Level Datasets (Spatial, Spatial-temporal)
- Scientific Goal 3: Inter-comparison of Earth System Models (Dim > 3)
- Scientific Goal 4: Emulate future climate scenarios (Dim > 3)

Talk outline

- Scientific Goal 1: Improve estimates of sea-level trends using spatial information
 - Regression Models
 - Simulation Study
 - Sea-Level Datasets Spatial & Spatial-temporal
- Scientific Goal 2: Inference from multiple sources of datasets
- Scientific Goal 3: Inter-comparison of Earth System Models
- Scientific Goal 4: Emulate future climate scenarios

Geostatistics - Estimation

To model the stochastic process $\{Z(s) : s \in G \subset R^d\}$

Regression Model

$$Z(s) = \mu(s) + Y(s) + \epsilon(s)$$

$$\mu(s) = E[Z(s)] \qquad \epsilon(s) \sim \mathcal{N}(0, \tau^2)$$

Gaussian process model: $(Y(s_1), \ldots, Y(s_n))' = \mathbf{Y} \sim G(0, K)$

Key ingredient $K(s, s') = Cov\{Z(s), Z(s')\}$

Covariance Function $k_{ij} \propto \mathcal{H}(Q_{ij})$ Correlation Function: \mathcal{H} 0.2 0.4 0.6 0.8 E.g. Matern function (\mathcal{M}_{ν}), Squared Exponential ($\nu \rightarrow \infty$), etc 0.2 0.4 0.6 0.8

Scaled Distance Length: $Q_{ij} = \Delta(s_i, s_j) \Sigma^{-1} \Delta(s_i, s_j)$

Geometric Anisotropy (Scale): Σ

Geometric Anisotropy (Scale)

Geostatistics: Rate of decay at various geo-locations Vision: Texture at various locations

High-Dimensional Geometric Structure

High-Dimensional Manifold

Symmetric Positive Definite (m)

$$\Sigma(\cdot) = \begin{bmatrix} l_{11} & \dots & l_{1m} \\ \vdots & \ddots & \\ l_{m1} & & l_{mm} \end{bmatrix}$$

Manifold of $\Sigma_i \in SPD(m)$

 $\hat{\Sigma}_i \leftarrow$ Mean estimate

 $\beta_i^1 \leftarrow \text{Direction to } \hat{\Sigma}_i$

Sea Level Changes

Climate Scientist Approach:

Physical understanding does not mean we know how likely it is

Goal: Provide a systematic approach to incorporate spatial structures for estimating local sea level changes.

Spatial Models

Deformation Models: Sampson & Guttorp (1992), Anderes & Stein (2008)

Processes on a Sphere: Jun & Stein (2008)

Spatially Varying Model: Hidgon (1999), Paciorek (2005), Riser (2014)

Weighted Average Models: Fuentes (2002)

Basis Function Expansion: Holland et al. (1998), Nychka et al. (2002), Matsuo et al. (2011), Katzfuss (2013)

Models for Large Geo-statistical Datasets: Lattice Kriging (Nychka et al. (2014)), Bayesian Nearest Neighbors Geostatistics (Banerjee (2016)), Stochastic PDE - INLA (Lindgren et al. (2011))

Spatially Varying Covariance Function

Geo-regional Sea-Level Changes

Complex spatial patterns results from ocean dynamical processes, movements of the sea floor, and changes in gravity due to water mass redistribution in the climate system.

Proposed Covariance Function

Geometric anisotropy now incorporates regional structure of the geolocations

$$Q_{ij} = (x_i - x_j)^T \left(\frac{\sum_{r(i)} + \sum_{r(j)}}{2}\right)^{-1} (x_i - x_j)$$

18

Dalal et al. (2014); Dalal et al. (2015) (Climate Informatics, **Best paper award**)

Proposed Covariance Function Construction

Choose a metric and a distance function for $\{\Sigma(s) \in SPD(m)\}$

Affine-invariant Metric

 $d(\Sigma_i, \Sigma_j) \leftarrow \text{Rao's Riemannian distance}$

Sample or Estimate: $\Sigma_{r(i)}$

Theorem 1: The proposed covariance function is a valid nonstationary covariance function.

19

Dalal et al. (2014); Dalal et al. (2015) (Climate Informatics, **Best paper award**)

Parameter Estimation

Markov Chain Monte Carlo scheme

1. For geometric anisotropy:

1. Sample from
$$\Sigma_{r(i)} \sim \mathcal{N}(\hat{\Sigma}, \hat{\Lambda})$$

- 2. Estimate for k-nearest neighbors:
 - 1. Profile likelihood

 $k_{ij} = \sigma_f^2 \mathcal{H}(Q_{ij}) + \sigma_n^2$

- 2. Proposal range is a measure of dispersion $|\hat{\Lambda}| < 1$ in $\{\Sigma\}_{i \in \text{neighbors}}$
- 2. For smoothness ν : Use profile likelihood and discrete priors {0.5,1,...,5.5}

3. Other parameters (σ_f, σ_n) : Jointly propose from their conjugate priors

Dalal et al. (2014); Dalal et al. (2015); Dalal et al. (2017) [In prep]

 $\hat{\Sigma} \leftarrow \operatorname{argmin}_{\hat{\Sigma}} \sum d^2(\hat{\Sigma}, \Sigma_i^k)$

 $\hat{\Lambda} = \sum_{k} \beta_{i}^{k} (\beta_{i}^{k})^{T}$

Model Improvements

1. Reduced the parameter space & Scalable to higher dimension:

1. Previous work (NSGP): $\{s_i\}_n \to \{\Sigma_i\}_n$

For m=3: 8n + 144

2. Our Approach (proposedNSGP): $\{s_i\}_n \rightarrow \{\Sigma_i\}_k$, $k \ll n$

21

Sample Scale Matrixk-neighbors
$$(2m + \frac{m(m-1)}{2}) \cdot k$$
+ 1For m=3: 9k + 1

Dalal et al. (2014); Dalal et al. (2015)

(Climate Informatics, Best paper award)

Model Improvements

- 2. Faster mixing (convergence) in MCMC scheme
- 3. Flexibility in the smoothness of geometric anisotropy:
 - 1. NSGP: Not suitable for jump datasets (discontinues process parameters)
 - 2. Proposed NSGP: Flexible for jump datasets

Dalal et al. (2014); Dalal et al. (2015)

Talk outline

- Scientific Goal 1: Improve estimates of sea-level trends using spatial information
 - Regression Models
 - Simulation Study
 - Sea-Level Datasets Spatial & Spatial-temporal
- Scientific Goal 2: Inference from multiple sources of datasets
- Scientific Goal 3: Inter-comparison of Earth System Models
- Scientific Goal 4: Emulate future climate scenarios

Simulation Studies

Importance of a good simulation study in Climate Data Science

oluntary Observers	' Meteor	ological R	ecord: 1	Month	O.		0	M	ont	hly	Mete	orolo	gical	Sum	mar
Station,			;	County	•		CON	CORD.	MASSA	CHUS	CITIS		MONT	HOF	luou
	C	one	ord,	Ma	ass	. N	Aqı	hth	of	X	lugi	est		1893	
DRY BULE	WET BI	1.8 DE	V POINT.	REL. I	IUMID.				w	IND.	WE	ATHER.	BAR	OMETER.	RAIN.
7 A M 7 P. M.	7 A M. 7	P. M. 7 A.	M. 7 P. M	7 A. M	7 P. M.	MAX.	MIN	MEAN.	7 A. M.	7 P. M.	7 A M.	7 P. M.	7 A. M.	7 P. M.	77/1
1 66 73	65	69 6	4 67	-95	88	81	64	74.5	Sir.	S	cloudy_	dondy	29.83	29.81	2.
1.65 69	60	62 5	7 38	175	67	79	59	69	1-15-	in	char	dear	30.04	30.15	1
5.60 73	5/	63 53	58	84	61	15	43	64	alm	3	clear	dez	30.25	30.12	
67 70	62	63 5	59	76	68	83	56	69.5	Sir	Sh-	fair	clondy	30.12	30.04	•
63 65	63	63.5 63	63	100	94	67	62	64.5	NE	AR	fram	clondy.	29.92	29.90	1.16
64 71	63	70 62	70	195	:95	85	56	70.5	5	3	Cloudy	cloudy	29.90	29.81	0.04
1 65 59	64	58.5 63	58	, 95	.97	. 77	.57	67.	N	w	doudy	fair	29.77	29.76	2.54

Data — Cat in Images [Google's Deep Dream Project (2016)]

[NASA]

Simulation Studies

Dalal et al. (2017) [In Prep]

Simulation Studies (Surfaces)

Evaluation Metrics

- 1. Mean Square Error (smaller is better): mean estimates
- 2. Negative Log Predictive Density (smaller is better): mean + variance estimates
- 3. Continuous Rank Probabilistic Score (larger is better): Probabilistic forecasting

GP models	statGP	NSGP	proposed NSGP	True-par-GP
MSE	0.33(0.02)	0.31(0.01)	0.30(0.01)	0.30(0.01)
NLPD	0.87(0.01)	0.80(0.01)	0.78(0.01)	0.77(0.01)
CRPS	0.47(0.2)	0.49(0.1)	0.50(0.1)	0.50(0.1)

Proposed NSGP recovers the underlying process.

MCMC

Reconstructed surface of the scale matrix range parameter from the MCMC draws

The proposed MCMC-NSGP recovers the underlying geometric anisotropy (Scale)

MCMC

MCMC draws of the scale matrix range parameter at S_i

MCMC-NSGP does not converge (slow mixing issue)

Talk outline

- Scientific Goal 1: Improve estimates of sea-level trends using spatial information
 - Regression Models
 - Simulation Study
 - Sea-Level Datasets: Spatial (Dim=2) & Spatial-temporal (Dim=3)
- Scientific Goal 2: Inference from multiple sources of datasets
- Scientific Goal 3: Inter-comparison of Earth System Models
- Scientific Goal 4: Emulate future climate scenarios

Climate (Sea Level) Dataset

Geophysical Simulation (GIA-VLM)

Experimental Set-up:

- 1. Time Frame: 1993 to 2012
- 2. Region-wise hold-out
- 3. Trends are found using time-series regression
- 4. All units in mm/year

Results

Results for Spatial Datasets (m = 2)

GP Models	statGP		NS	GP	propNSGP	
Eval Metric	MSE	NLPD	MSE	NLPD	MSE	NLPD
Tide Gauge	0.85	2.81	0.75	2.82	0.71	2.78
GIA-LVM	0.58	3.08	0.56	2.00	0.54	1.94

Dalal et al, 2015 (Climate Informatics, Best Paper Award)

Estimates with regional structure is better!

Results for Spatio-Temporal Datasets (m = 3)

GP models	statGP		NS	GP	propNSGP		
Eval Metric	MSE	NLPD	MSE	NLPD	MSE	NLPD	
Remote Sense	1.38	4.29	1.18	4.25	1.10	4.15	

Dalal et al. (2015), American Geophysical Union

Climate (Sea Level) Dataset

Geophysical Clusters of Stations [Kopp et al., Nature (2013); Hay et al., Nature (2015)] Proposed Model [Dalal et al. (2015); Dalal et al. (2017) [In Prep]]

Geometric Anisotropy (ellipses) aligns with the orientation of the near by points at the coastline

Data clusters conforms with the geophysical clusters

Talk outline

- Scientific Goal 1: Improve estimates of sea-level trends using spatial information
- Scientific Goal 2: Inference from multiple sources of datasets
- Scientific Goal 3: Inter-comparison of Earth System Models (Dim > 3)
- Scientific Goal 4: Emulate future climate scenarios (Dim > 3)

Multiple Data-products

Spatial Data

Prior Approaches in Climate

For time series with one variable: Church & White (2011)

Region specific: Davis et al (2010), Ouillon (2003)

Climate variable specific: IPCC (2013)

Data - Fusion Model

Parameter Estimation

Regression for $\Sigma \in SPD(m)$: $\Sigma_{SA}(s) = \phi_1(s)\Sigma_{TG}(s) + \phi_2(s)$

But, $\Sigma \in SPD(m) \rightarrow \phi_1 \Sigma \notin SPD(m)$

Thanks to affine-invariant metric!

 $\log:SPD(m)\to S(m) \quad , \quad \exp:S(m)\to SPD(m)$

$$\hat{\Sigma}_i \longrightarrow \Sigma_{SA}(s) = \exp(\phi_1(s)\log(\Sigma_{TG}(s))) + \phi_2(s)$$

Theorem 2: The proposed covariance function is a valid covariance function.

Dalal et al. (2015); Dalal et al. (2017) [In prep]

Results

Results for Tide Gauge Spatial Datasets (m = 2)

GP models	statGP	NSGP	propNSGP	data-fusion-NSGP
MSE	0.85	0.75	0.71	0.66
NLPD	2.81	2.82	2.78	2.75

Dalal et al. (2015)

(Climate Informatics, Best paper award)

Estimates from multi-sources of information is better!

Results for Remote-Sensing Spatio-Temporal Datasets (m = 3)

GP models	statGP	NSGP	propNSGP	data-fusion-NSGP
MSE	1.38	1.18	1.10	1.09
NLPD	4.29	4.25	4.15	4.11

Dalal et al. (2015),

American Geophysical Union

Talk outline

- Scientific Goal 1: Improve estimates of sea-level trends using spatial information
- Scientific Goal 2: Inference from multiple sources of datasets
- Scientific Goal 3: Inter-comparison of Earth System Models (Dim > 3)
- Scientific Goal 4: Emulate future climate scenarios (Dim > 3)

"One's intuition in higher dimensional space is not worth a damn!" - Dantzig

Dimensions > 3

Climate model outputs from various Earth System Modeling groups

41

Prior Approaches in Climate

Genealogy: Knutti et al. (2013)

Bayesian Approaches: Tebaldi et al. (2005, 2007), Furrer et al. (2007), Leith (2010)

Machine Learning Approach: Sanderson et al. (2015)

Distance Function

Step 1: Learn data parameters {sill, range, nugget} $\theta = \{\sigma, \phi, \psi\}$

$$\theta_i = \operatorname{argmax}_{\theta} \hat{l}(\theta, y_i)$$

Step 2: Fitting covariance for each climate model output

$$\Sigma_i(\theta_i) = \psi_i I + \sigma_i^2 H(\phi_i)$$

Step 3: Distance on a manifold

 $\Sigma_i(\theta_i) \in SPD(n)$

$$D^{2}(\Sigma_{1}, \Sigma_{2}) = \frac{1}{2} \operatorname{tr}(\log^{2}(\Sigma_{1}^{-\frac{1}{2}}\Sigma_{2}\Sigma_{1}^{-\frac{1}{2}}))$$

Evaluation: Distance Matrix

44

Little Contrast

- More Contrast
- More Dependencies Identified

Euclidean distance between climate model outputs

Geodesic distance between covariance matrices of climate model outputs

Dalal et al. (2016) (Climate Informatics, **Best paper award)**

Evaluation: Model Dependencies

Talk outline

- Scientific Goal 1: Improve estimates of sea-level trends using spatial information
- Scientific Goal 2: Inference from multiple sources of datasets
- Scientific Goal 3: Inter-comparison of Earth System Models (Dim > 3)
- Scientific Goal 4: Emulate future climate scenarios (Dim > 3)

Dimensions > 3

Earth system models running on a supercomputer take several months to output projections of future climates.

Prior Approaches in Climate

Bayesian Approaches: Tebaldi et al (2005, 2007, 2009)

A list of very specific approaches: IPCC (2013)

Statistical Emulator

Multivariate Normal Sampling (MVN) Scheme

$$\tilde{\mathbf{y}} = \mu + \Sigma^{\frac{1}{2}} \epsilon$$

$$\hat{\mu}$$
 - Multi-model ensemble mean, $\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y_i}$

 $\hat{\Sigma}$ - Covariance fitting $\Sigma(\theta)$, $\theta = \{\text{range, sill, nugget}\}$

Challenges

Climate model outputs are not independent.

Proposed Sampling Scheme

Weighted multi-model ensemble mean:

Weights are Informed from high-dimensional geometric structure

 $\hat{\mu} = \sum_{j=1}^{n} \sum_{k=1}^{m_j} \frac{1}{nm_j} \mathbf{y}_{j,k}$, where n is the number of clusters.

Proposed Sampling Scheme

Sample a covariance matrix from a distribution on a manifold.

$$\hat{\Sigma} \sim \mathcal{N}(\bar{\Sigma}, \Lambda | \Sigma(\theta_1), \dots, \Sigma(\theta_N))$$

 $\bar{\Sigma} \leftarrow \begin{array}{l} \text{Weighted mean estimates} \\ \text{of CMO of covariance} \\ \text{matrices} \end{array}$

 $\Lambda \leftarrow \begin{smallmatrix} \text{Covariance of CMO} \\ \text{covariance matrices} \end{smallmatrix}$

Evaluation: Semi-variogram Plots

Evaluation: Spatial Field

Model: GFDL-ESM2G Model: GFDL-ESM2G **Proposed Sampling Proposed Sampling MVN** Sampling h **MVN** Sampling

Conclusion

• Scientific Goal : Reduce the climate change's projection uncertainty

Aim: By developing geostatistical models for geometric structures

- 1. Improved parameter modeling
- 2. Improved parameter estimation
- 3. Leveraging multiple sources of information

Conclusion

• Scientific Goal : Emulate future climate change scenarios

Aim: By developing geostatistical models for geometric structures

- Improved comparison of existing models that provide future scenarios.
- Emulator does not need a supercomputer and few months; but just a laptop and few hours.

Acknowledgements

- U.S. Department of Homeland Security under Grant Award Number 2012-ST-104-000044 (CCICADA Fellowship)
- U.S. Department of Education (GAANN Fellowship)
- Computational Biomedicine Imaging and Modeling Center
- IMAGe at National Center for Atmospheric Research
- Thesis Committee Members
- CBIM & NCAR Colleagues

Thank you

Extra