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ABSTRACT

One of the important tasks in video surveillance is to detect and track targets moving independently in a scene.
Most real-time research to date has focused on scenarios from stationary cameras where there is limited movement
in the background, such as videos taken at traffic lights or from buildings where there is no background proximal
to the background. A more robust method is needed when there are moving background objects such as trees
or flags close in the camera or when the camera is moving. In this paper we first introduce a variant of the
multimodal mean (MM) background model that we call the spatial multimodal mean (SMM) background model
that is better suited for these scenarios while improving the speed of the mixture of Gaussians (MoG) background
model. It approximates the multimodal MoG background with the generalization that each pixel has a random
spatial distribution. The SMM background model is well suited for real-time nonstationary scenes since it models
each pixel with a spatial distribution and the simplifications make it computationally feasible to apply image
transformations. We then describe how this can be integrated into a real-time MTI system that does not require
the estimation of depth.

Keywords: Background Modeling, MTI, Spatial Multimodal Mean, Mixture of Gaussians, Parametric Motion
Model

1. INTRODUCTION

Moving target indicator (MTI) is the problem of detecting and tracking objects that are moving in a scene. There
have been many publications and research on MTI using radar. In computer vision, where passive sensors such
as visible or IR cameras are used, the tracking problem has received a lot of focus, however the initial detection
of moving objects has received less focus. Even in the case where the camera is stationary, this problem can
be difficult in real-world scenarios due to lighting changes and background clutter for example. Although this
paper focuses on the stationary case, the background model that we propose is well suited for use from a moving
platform since it models each pixel in the scene with a spatial distribution.

In this paper we outline our approach of detecting and tracking objects from a visible light camera. We
show that the spatial multimodal (SMM) background model improves upon the performance of the multimodal
(MM) model while conserving some of the computational efficiency properties. It is shown that the SMM model
performs better than the mixture of Gaussians (MoG) model both in speed and performance. The overall MTI
framework introduced in this paper has been able to detect and track objects that are moving as far away as 700
meters with a 65 degree field of view on days that are not windy. On windy days, targets can be tracked reliably
about 300 meters away. Using standard filtering approaches, occlusions with the background and between moving
objects, can be handled.

This paper is organized as follows. A survey of related background models is given in section 2. Section 3
and 4 introduce the spatial multimodal mean background model and how we use it to detect moving objects
respectively. Several background models are evaluated in section 5.
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2. RELATED WORK

Background subtraction and other backgrounding techniques enable moving objects to be segmented out of
scenes from stationary cameras. Because of this ability, it is a useful preprocessing step for many algorithms,
especially with MTI. A more thorough review of background modeling than what is found here can be found
in [1].

Most background techniques model each pixel independently. For an M×N image I, a pixel xc ∈ {1, ...,M×
N} is modeled by a corresponding pixel in the background model xb, which for stationary scenes it is often
modeled as xb = xc. The models update each background pixel xb in an online fashion as each new image It
arrives. What statistics or information are kept and how they are updated is dependent on the model. The
weighted mean model, for example, just keeps a running average of the colors µt,xb

= (1− α)µt−1,xb
+ αIt(xc).

In outdoor scenes where a single pixel may be encoding multiple background objects under varying lighting,
modeling each pixel as a single distribution is often insufficient. Consequently, there has been a recent movement
towards the use of multimodal approaches. The multimodal mixture of Gaussians (MoG) [2] models each
background pixel xb as a mixture of K Gaussians. In this model, each pixel is represented as a mixture of K
Gaussians. The probability of observing a pixel is modeled as

P (I(xc,t)) =
K∑

i=1

wi,tN(I(xc,t), µi,t,Σi,t), (1)

where N(I(x), µ,Σ) is the multivariate Gaussian density function of the color distribution of a mode and wi,t is
its corresponding weight. Like the weighted mean, MoG updates the background statistics in an online fashion.
A pixel is classified as background if it is within 2.5 standard deviations of one of the Gaussians that has sufficient
evidence of being background.

Apewokin et al [3] proposed the multimodal mean background model that provides a 6x speedup over the
MoG model. We improved their results by adding spatial sampling of the distributions while still achieving
a speedup of 2.5x over the MoG model. Further speedups could be achieved by combining the stationary and
spatial updates into a single background update. This model is chosen not only because of the speed, but because
the calculations are tractable even when warping the background for non-stationary scenarios.

In order to utilize background subtraction from a moving platform, [4] created the spatial distribution of
Gaussians (SDG) model. It transforms each pixel xc to the estimated background location x̂b by using the
transformation matrix Γ between the two image planes by ˜̂xb = Γx̃c where x̃ is the homogeneous coordinates of
x. It assumes that the true position xb is Gaussian distributed about x̂b. They express the probability density
function of the true location xb as

p(xb|x̂b) =
1

2π|R| 12
exp

(
−1

2
(xb − x̂b)

T
R−1 (xb − x̂b)

)
. (2)

The SDG models each pixel as a bimodal mixture of Gaussians. A narrow Gaussian encodes the background
and a wide Gaussian (or uniform distribution) encodes the targets. It models the probability density function
of observing a I(x) of a pixel x as

p(I) = p(I|B)P (B) + p(I|¬B)P (¬B), (3)

where B stands for background and ¬B is the foreground. They then use the likelihood ratio test for classification.
The speed of the SDG approach was not reported.

3. SPATIAL MULTIMODAL MEAN BACKGROUND MODEL

Multimodal background techniques are able to model a point in the background, for example a specific leaf on
a tree, that is repeatedly traversing the same path on the background plane. This is a common occurance,
largely due to wind that can cause branches and other objects to sway. However, a deviation from the path as



Figure 1. Throughout a sequence of images, a single point x in the background of the scene is constantly being projected
onto a pixel xc of the current image plane. Due to the factors such as wind or movement of the camera, the corresponding
pixel location xc changes throughout the sequence. Given a pixel xc, the correct corresponding pixel location of the
background plane, xb, is unknown. In addition to keeping a multimodal distribution, SMM models the location of the
corresponding background pixel as xb = xc + e, where e is a bivariate probability distribution and E[e] = ~0. Therefore a
neighboring point can be projected to a novel neighboring location and still be correctly classified as background.

slight as a single pixel may cause misclassification as foreground. Our spatial multimodal mean (SMM) models
the aforementioned scenerio by adding spatial variance, allowing deviation from oscillating paths without being
misclassified as foreground. See figure 1.

Let x be a point in the scene, xc the pixel location in the current image plane, xb the corresponding pixel
location in the background model, and I(xc) ∈ colorspace and B(x) ∈ {true, false} be its color in the current
image and background classification respectively. We relax the assumption that xb = xc with xb = xc + e where
e is a spatial bivariate distribution with mean ~0. We randomly sample pixels from the simulated distribution
during the background update.

The multimodal distribution for each pixel x is represented by up to K modes, mx,i where i ∈ {1...K}. Each
mode mx,i is associated with the integer fields: count, sum, r1, and r2, where count is the number of pixels
that have been matched with the mode, sum is the sum of the corresponding color vectors, and the recency
R = r1 + r2 provides a measure of how often the color distribution was matched within recent history. Table 1
shows the pseudo code of our algorithm for the SMM background model.

A mode is considered background if its count is at least TFG or half of the sum of all of counts of the modes
xb. The latter condition is a small addition to [3] that allows for decent classification after the first several frames
of starting the algorithm. TFG is a parameter of the maximum number of times a pixel can be observered in the
scene and still be classified as foreground. A pixel is classified as background if it matches a background mode.
A match to a mode is defined as each color component in xc being within a predefined distance Ex of the mean
color of that mode.

The function create match or replace mode(I(x)) first tries to find an existing mode that matches the color
of the pixel x and if successful it returns this mode. Otherwise, if there are less than K modes, then it creates
a new one. If there are already K modes, then it finds the mode that with the smallest count from the set of
modes {m|Rm < (w/K)} with low recency values.

For the purpose of adaptation to changes in the scene, we divide the sum and count fields by two for all of
xbs modes every d frames, where d is a predefined decimation rate. The recency is estimated for each mode by
setting r2 to the value of r1 and resetting r1 to 0 every w frames and incrementing r1 and leaving r2 untouched
for all the other frames.

Pixels with the same distance in the RGB colorspace will be perceptually more similar in the dark regions than
in the bright regions. A colorspace that approximates perceptual uniformity, such as CIE 1976 (L*,u*,v*) [5,6],
should therefore be used so that the distances in the colorspace are proportional to the perceived color distance.
Due to the efficiency that colorspace conversion can be calculated, dealing with the perceptually warped RGB
colorspace is not justified.



Table 1. Algorithm for spatial multimodal mean on a pixel at x.

update pixel( x )

for t = 1 to N
classify(x) . classify pixel

mx :=create match or replace mode(I(x)) . find closest distribution
update mode(mx,I(x)) . update the distribution

xr :=normrnd(x, σ) . spatial distribution
mxr

:=create match or replace mode(I(xr)) . find closest distribution
update mode(mxr

,I(xr)) . update the distribution

if t%d = 0 then . decimation step
for each mode mx,i . d is decimation rate
count(mx,i) := count(mx,i)/2
for each channel c
sum(mx,i, c) := sum(mx,i, c)/2

end
end

end

if t%w = 0 then . recency reset
for each mode mx,i . w is time frame sliding window
r2(mx,i) := r1(mx,i)
r1(mx,i) := 0

else
r1(mx,i) := r1(mx,i) + 1

end
end

end

Table 2. Algorithm for updating the mode m with a pixel x.

update mode( m, I(x) )

count(m) := count(m)+1
for each channel c
sum(m, c) := sum(m, c)+I(x, c)

end



4. MOVING TARGET DETECTION

The SMM background model is used as a part of an MTI framework. Typical techniques such as calculating
connected components [7] from the background model and utilizing Kalman filters [8] are used by our MTI system
in order to utilize the background classification. Even with a good background model these techniques are not
always sufficient to build a robust outdoor MTI system. For example, trees and shrubs which are proximal to
the camera can cause significant misclassification in a windy environment. These approaches may incorrectly
“see” movement in such areas of misclassification because of the heuristics used to track the foreground segments
between frames.

To increase the reliability of the classification of moving targets, we introduce a probabilistic framework in
the following subsection. Figure 2 gives the intuition behind the proposed probabilistic approach.

4.1 Probabilistic Classification of Moving Targets

In order to detect moving targets, it is useful to have a precise definition of what it means to be moving. For
MTI applications, it is not useful to define objects that sway in the wind or similar oscillating motion as being
moving targets. Also, perceived movement from noise should not be considered movement.

Let U ∈ R2 be a vector of random variables describing movement of a target, in a single time step, on a
stationary image plane. We then define a stationary target to be a target such that E[U ] = ~0 and correspondingly
a moving target is a target such that E[U ] 6= ~0.

In the rest of this section, we will show how to calculate the probability that a target is stationary, when
given the observations of a target. We can estimate the probability distribution of U as

U ∼ N(µ̂, Σ̂), (4)

where µ̂ is the sample mean and Σ̂ is the sample variance. Figure 2 (a)-(b) shows two such estimated PDFs
where the sampled mean is the same but the sampled variance is different.

We can also approximate the distribution of U with the assumption that the object is stationary by locking
the mean to ~0:

◦
U∼ N(~0, Σ̂). (5)

See figure 2 (c)-(d).

Let ? be the observation of that the current sample mean is at least as large as µ̂. We are interested in
Pr(E[U ] = 0|?), ie. the probability that the object is stationary given our observation ?. We will first show how
to calculate Pr(?|E[U ] = 0) and then use Bayes theorem to calculate Pr(E[U ] = 0|?).

Let
◦
V be the random variable for the sample mean of

◦
U , in other words,

◦
V=

n∑
i=1

wi

◦
U

(i)

, (6)

where n are the number of samples,
◦
U

(i)

∼ N(0, Σ̂) is the RV for the ith displacement and wi is its weight (figure
2 (e)-(f)). The weights correspond to the definition of the sample means being used, which usually means that
wi = 1/n. From the properties of multivariate normals,

◦
V∼ N

(
~0,
(
Σn

i=1w
2
i

)
Σ̂
)

. (7)

We can now use
◦
V to calculate the probability of ? under the stationary assumption with

Pr
(
?
∣∣∣E[U ] = 0

)
≡ Pr (|X1| ≥ n |µ̂1| ∪ |X2| ≥ n |µ̂2|) , (8)



(a) Target 1’s estimated PDF of U . (b) Target 2’s estimated PDF of U .

(c) Target 1’s estimated PDF of
◦
U . (d) Target 2’s estimated PDF of

◦
U .

(e) Target 1’s estimated PDF of
◦
V . (f) Target 2’s estimated PDF of

◦
V .

(g) Target 1’s
◦
V , where |

◦
V 1 | > 2 or

|
◦
V 2 | > 1.

(h) Target 2’s
◦
V , where |

◦
V 1 | > 2 or

|
◦
V 2 | > 1.

Figure 2. The probability density functions (PDFs) that are estimated from n sampled movements of two targets with
the same sampled mean (+2, +1) are shown in (a) and (b). (a) contains very little noise relative to the movement, while
(b) contains a lot more. Intuitively, the probability that the true mean of (a) is the null vector is less than the probability
that the true mean of (b) is the null vector. (c)(d) show the PDFs with the assumption that the objects are stationary,

(e)(f) show the PDFs of
◦
V , the random variable for a sample mean with n samples, as defined in (6) with n = 4, and

(g)(h) have the regions that will not be integrated (−2 < x < 2 and −1 < y < 1) set to 0. Since the Pr(?)’s are equal for
both targets, using (9) we know that the larger area under (h) means that target 2 is more likely to be stationary. The
results then match our intuition that target 1 is more likely to be moving than target 2.



where
[
X1

X2

]
∼
◦
V ,
[
µ̂1

µ̂2

]
= µ̂, and n is the number of samples used to calculate µ̂; hence, nµ̂ is the difference

between the last sampled pixel location and the first sampled pixel location.

(8) can be calculated by integrating over
◦
V where |X1| ≥ |µ̂1| ∪ |X2| ≥ |µ̂2| or by using an estimate of the

CDF of
◦
V [9–13]. See figure 2 (g)-(h).

Using Bayes theorem

Pr
(
E[U ] = 0

∣∣?) =
Pr
(
?
∣∣E[U ] = 0

)
Pr (E[U ] = 0)

Pr (?)
. (9)

The probability of an object being stationary, Pr (E[U ] = 0), can be calculated from training datasets, which
depends on the platform and background model. Pr (?) can be modeled as a univariate or bivariate normal and
the parameters can be estimated from real datasets.

5. EXPERIMENTS

We evaluated the weighted mean, MM, and SMM backgrounding methods on four image sequences. Two image
sequences, “Waving Tree” and “Bootstrap,” are from the Wallflower benchmarks [14]. We include the results of
these two benchmarks with the frame differencing and MoG backgrounding techniques as reported by [3]. The
third image sequence “Windy” was collected on a windy day. The last image sequence “River” was simulated in
the RIVET (Robotic Interactive Visualization and Exploitation Technology) platform.

Each image sequence contains a frame that is used for evaluation. Every pixel in the ground truth image for
the evaluation frame is hand-labelled as either background or foreground. We used the ground truths provided
with the Wallflower sequence so that our results could be compared with that in [3]. Both MM and SMM
produced near zero false positive classifications in the River sequence after sufficient samples, so we evaluated
the results of early in the sequence. The benchmark sequences are summarized in Table 3. The Bootstrap
sequence is the only one of the included benchmarks that has significant foreground objects in every image.

The parameters used for the different models are shown in Table 4. The same parameters were used as
in [3] except for MM, where the number of bins were increased from 4 to 5. We did this so that the increase in
performance in SMM would not be attributed to the difference of the number of bins. The Ex distance threshold
was made smaller in the SMM since this could be done without a significant increase in the false positives.

We ran the experiments on a 2.9 GHz Intel Core Duo system running Windows XP. The background models
were written in C++. In order to evaluate the computational cost of the MM and SMM algorithms more
efficiently, we ran the algorithms on a mosaicked image of size 3380x400 pixels. The MM took 149 ms and the
SMM took 361 ms. Assuming a similar speedup of the MM over the MoG as in [3] , the SMM provides a 2.5x
improvement in execution speed. Further increases in computational efficiency could be achieved by utilizing the
GPGPU.

The accuracy of the background models is shown in figures 3 and 4. The spatial distribution of the SMM
allow a tighter threshold to be used without adding additional noise. Because of this, the SMM is able to detect
more of the true foreground objects in the Bootstrap sequence. Most of the weighted mean’s false positive results
in the River sequence are from the area following the Stryker that has been added to be background model, while
with the MM and SMM it is from the movement of the river.

Figure 5 shows the cropped result of the MTI framework being applied to a large mosaicked image.

6. CONCLUSION

In this paper we proposed the spatial multimodal mean background model and compared it to several other
background models, showing that it is more robust towards movement of the background. It is 2.5 times faster
than the mixture of Gaussians background model while providing higher accuracy. The new model is used as a
major part of a reliable real-time stationary MTI framework that is not dependent on depth estimation.



(a) Waving Trees

(b) Bootstrap

(c) Windy

(d) River

Figure 3. Frame difference and MoG results were reproduced from [3].



Table 3. Benchmarks

Sequence Sampled Frame Downsampled Frame Size (width x height)
Waving Tree 247 160 x 120
Bootstrap 299 160 x 120
Windy 571 341 x 256
River 52 341 x 256

Table 4. Background Evaluation Parameters

Algorithm Parameters
Frame Differencing Ex = 30 for x ∈ {R,G,B}
Weighted Mean α = 0.1 in ut = (1− α) ∗ ut−1 + αxt

Mixture of Gaussians K = 4, initial weight w = .02, learning rate α = 0.01, weight threshold T = .85
Multimodal Mean K = 5, Ex = 30 for x ∈ {R,G,B}, TFG = 3, decimation rate d = 400, recency

rate w = 32
Spatial Multimodal Mean K = 5, Ex = 20, x ∈ CIELUV , TFG = 6, d = 400, w = 32, spatial variance

σ = 1 with a 5x5 window

Waving
Trees

Bootstrap

Windy

River

(a) Evaluation Image (b) Ground Truth (c) MM Result (d) SMM Result

Figure 4. Results comparing MM and SMM.



Figure 5. Cropped result from entire MTI system. The dark vertical band in the image is from image mosaicking. Detected
moving targets are indicated with two boxes and an ID, where the boxes indicate the current and predicted location in
the next frame. The boxes without any ID indicate areas of interest. The boxes with IDs indicate moving objects. The
flag on the right moves around too much to be removed from the background model, however it still is not detected as a
moving object. A few vehicles on the distant roads are indicated as areas of interest.
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