AM Auto Pilot Control Diagram

Robotic Systems

Dynamics Robotic Systems as an internal

1

• Rigid Body Model

- Initial Assumptions
 - 3 Degree of freedom: Surge, Sway and Yaw
 - Derived in body centric frame (b-frame)

•
$$F_{model} + F_{err} = Mv' + D(v)v + C(v)v$$

- F_{model} = Rigid body force of ship [Surge, Sway, Yaw moment]
- F_{err} = Forces and moments to compensated for error in model This is learned from the Extended Kalman Filter
- M = Vehicle rigid body mass + Mass of Inertia of surrounding fluid
- D = Radiation induced damping, vortex shedding, wave drift, skin friction
- C = Coriolis effect / Centripetal force
- v = Ship velocity

GENERAL DYNAMICS This document was prepared by General Dynamics Robotic Systems as an internal

2

Environmental

Assumption of Force and Moment superposition

Wind function

•
$$F_{wind} = f(C(r'_r), \rho a, V_r, A)$$

 $C(r'_r)$ = empirical force coefficient

- ρa = density of air
- V_r = velocity of wind relative to vehicle
- A = projected contact area

GENERAL DYNAMICSThis document was prepared by General
Dynamics Robotic Systems as an internal3

Environmental continued

- Wind Generated Waves
 - Wavelets appearing on the water surface break and dissipate their energy when interacting with the vehicle, causing added force and moments
- Ocean Currents
 - Forces caused due to horizontal and vertical circulations, Tidal components arising due to gravity, as well as other forces which are distinctive to a particular sea
 - Can be neglected at high speed

Payload

• Accounts for drag generated by deployed payload

Low Pass Filter

- Smoothes instantaneous large forces and moments for safe vehicle operation
- Output is the controlled driving force needed to drive the vehicle over the period of two states

Force Allocation

 Forces and moments needed to drive the vehicle are allocated to various actuators (throttles, water jet steering angles, reversing buckets, trim tabs)

5

GENERAL DYNAMICS This document was prepared by General Dynamics Robotic Systems as an internal

- INS/GPS
 - Provides measure of vehicle's current physical state
 - Includes measurement errors
- Extended Kalman Filter
 - Input
 - Next vehicle state
 - Current state measured by the INS/GPS
 - Output
 - Actual vehicle state, after removing INS/GPS measurement error
 - One can also learn, from the Kalman Gain, the errors in the initial approximations of the rigid body and environmental model. A compensating force, F_{err}, can then by applied in the rigid body model.

 GENERAL DYNAMICS
 This document was prepared by General Dynamics Robotic Systems as an internal
 6