
COVARIANCE STRUCTURE ANALYSIS . . .
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Abstract—To understand future climate change,
different Earth system models from groups worldwide
simulate projections of future climates. However, results
from these simulations are computationally very expen-
sive, often requiring several months on a supercomputer.
In this paper, we provide a new statistical emulation
method that may allow a realization of future climate
projections within a day rather than several months.
Specifically, we analyze the structure of several existing
outputs from various climate models on a manifold of
covariance matrices. The manifold covariance structure
provides a method to compare existing climate model
outputs, as well as to sample a new realization of future
climate projections. We validated our climate model
output comparison method using known dependencies
between various climate models. Additionally, we
showed, using semi-variogram plots, that the distribution
of our realizations lie within the distribution of existing
climate model outputs. The proposed statistical emulator
could find its use in future climate impact assessment.

I. INTRODUCTION

Our understanding of future climate changes can
improve by analyzing various plausible realizations
of future climate projections. However, generating a
climate simulation from an Earth System model is com-
putationally very expensive since the model captures
the complex interactions among the many components
of the Earth’s climate system (see [1]). The Coupled
Model Inter-comparison Project (CMIP [2]) coordinates
efforts between various groups developing Earth system
models to create a database of multi-model ensembles
of climate simulations. For example, Fig. 1 shows
changes in precipitation for North America from two
separate Earth system models that are part of the
CMIP Phase 5 (CMIP5) multi-model ensemble. Both
of these models show a plausible, yet, different view of
future climate changes. Hence, a thorough assessment
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Fig. 1. Projections (2090) of percent change in precipitation per
degree of change in the global mean temperature for North America
from the CMIP5 multi-model ensemble. Shown here are projections
from the Max Planck Inst. (MPI, Germany) and Community Earth
System Model (CCSM4, USA).

of future climate impact requires a framework that can
capture the variability across all climate model outputs.

An overview of methodologies that can capture the
variability among climate model outputs is given in [3],
along with the limitations of these approaches. For ex-
ample, some of the climate models share common phys-
ical representation and numerical methods, and, thereby,
cannot be considered as independent simulations. Ad-
ditionally, the dependencies in climate models reduces
the spread of future climate projections. To address the
inter-model dependency issue, a Bayesian hierarchical
framework has been suggested by [4], [5], [6], [7].
However, the proposed Bayesian framework faces
difficulties in robustly modeling the inter-dependencies
because of its sensitivity to prior assumptions.

Recent work by [8] shares similar methodological
goals as ours in that the authors address issues of
model dependencies and sampling in a non-parameteric
set-up. The authors use a standard Euclidean metric
on a low dimensional space by fixing the modes of
variance within the available ensemble. Thus, limiting
the amount of variability information that is present in
the climate model outputs.

This paper presents an approach that allows for the
variability information from the climate model outputs
to be estimated. Specifically, we assume that the
ensemble of well fitted covariance matrices provides
sufficient information to characterize a distance
measure. One application is to sample new realizations
from an existing ensemble of climate model outputs.
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II. METHOD

To capture the variability of future climate projec-
tions at locations around the globe and across the
ensemble members, one requires a multivariate model
framework. If ỹ is a mutlivariate normal (N (µ,Σ))
then the standard multivariate normal sampling method
(sMVN) is given by

ỹ = µ+ Σ
1

2 ε, (1)

where ỹ is the new multivariate sample representing
the future climate projection, µ is the ensemble mean ,
Σ is the ensemble covariance matrix, and ε ∼ N (0, I)
is the standard normal random vector.

In sMVN, the estimation of the parameters of the
distribution of the climate model outputs (Σ and µ) is
of the forms

Σ(θ)(i.e. Σ̂) = ψI + σ2H(φ), µ̂ =
1

N

N∑
i=1

yi. (2)

In this preliminary study, H is selected as a stationary
anisotropic matérn covariance function. Here, stationar-
ity is selected for simplicity, and the anisotropic matérn
covariance function is a standard choice in geostatistics.
Finally, µ̂ is estimated as an equally weighted average.

The parameters θ = {φ, σ, ψ} are also known as
range, sill, and nugget, resp., in the geostatistics litera-
ture. They are estimated by maximizing the likelihood
function, which is of the form `(θ|y1, . . . ,yN) ∝
|Σ(θ)|−

N

2

∏N
i=1 exp(−1

2(yi − µ̂)TΣ(θ)−1(yi − µ̂))),
where N is the number of ensemble members, and yi

is a vector field of climate model outputs.
Our statistical emulation method, which we call the

information geometric multivariate normal sampling
method (igMVN), is depicted in Fig. 2. In igMSN, the
estimate of the parameters Σ and µ is of the form

Σ̂ = Σ̄ + Λ
1

2 ε, µ̂ =

n∑
j=1

mj∑
k=1

1

nmj
yj,k, (3)

where Σ̂ is sampled from a normal distribution
on a manifold of covariance matrices, i.e.,
Σ(θ) ∼ N (Σ̄,Λ|Σ(θ1), . . . ,Σ(θN)). Finally, µ̂ is
estimated as a weighted average. Here, n is the number
of clusters of covariance matrices, and mj is the
number of covariance matrices in each cluster.

The parameters Σ̄ and Λ are the mean and variance,
resp., of the ensemble of covariance matrices. Each
Σ(θi)(i.e. Σi) is a covariance matrix of individual
ensemble members, and θi is learned by maximizing
a likelihood function.

Manifold of Covariance Matrices

⌃2

⌃N

⌃3

⌃i ⌃j

⌃1

⌃̄ - Mean

%
 c

ha
ng

e 
in

 p
re

ci
p 

pe
r d

eg
re

e 
of

 g
lo

ba
l w

ar
m

in
g

-20

-10

0

10

20

30

Modeling Team - MPI

Fitting covariance for each 
climate model output:

% change in precip per degree of global warming

-20

-10

0 10 20 30

 % change in precipitation per 
 degree of global warming

%
 c

ha
ng

e 
in

 p
re

ci
p 

pe
r d

eg
re

e 
of

 g
lo

ba
l w

ar
m

in
g

-20

-10

0

10

20

30

Modeling Team  - MRI

%
 c

ha
ng

e 
in

 p
re

ci
p 

pe
r d

eg
re

e 
of

 g
lo

ba
l w

ar
m

in
g

-20

-10

0

10

20

30

Modeling Team - CCSM4

Fig. 2. Our inter-model comparison and sampling method: A
Manifold view of the covariance structure of climate model outputs
from various modeling teams (e.g. MPI, MRI, CCSM4)

A theoretical background for statistical distributions
of symmetric positive definite matrices on a manifold
can be found in [9], and the computational form to
estimate Σ̄ and Λ is given in [10], [11], [12], [13].

In order to estimate µ̂ using the weighted average,
we first cluster the covariance matrices on a manifold
using a standard hierarchical clustering method. The
criteria for a cluster is max{D(Σ1,Σ2) : Σ1 ∈
S1(Σi),Σ2 ∈ S2(Σi)} < threshold. The choice of
the clustering method and the criteria for clustering
are chosen for simplicity. The threshold is empirically
chosen as 2 in our experiments, S1 and S2 are two sets
of clusters of Σi’s, and the distance metric (geodesic)
on the manifold of covariance matrices is of the form
D2(Σ1,Σ2) = 1

2Tr(log2(Σ
− 1

2

1 Σ2Σ
− 1

2

1 )).
The estimates of µ̂ and Σ̂ in igMVN incorporate extra

information about the structure of covariance matrices
that the sMVN fails to consider. This extra information
is enabled using statistics on the structure of the
covariance matrices in order to detect dependencies in
climate model outputs and, thereby, incorporate known
limitations in the ensemble members.

III. EVALUATION

To gain insight into the applicability of our proposed
statistical emulation method, we used the ensemble
of climate model outputs from CMIP5 experiments of
future projections under RCP scenarios (see [1]). In
order to test our method against various patterns in
climate model outputs, we selected the climate variable
of percent change in precipitation per degree of change
in the global mean temperature.

In this paper, we restrict our study to the spatial
dataset of the North American region in order to
analyze the regional spatial variability aspect of the
climate model outputs. Additionally, we have included
single simulation runs from each of the Earth System
Models (ESMs), rather than multiple simulation runs,
in order to reduce biases in the ensemble.
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Fig. 3. A representation of the similarity measure between climate
models outputs of the CMIP5 ensemble members. The similarity
measure that we designed is a geodesic distance between the fitted
covariance matrix of individual climate model outputs. Rows and
columns of the above plot represent various climate model outputs,
lighter shades of red represent higher similarity between models,
and boxes represent climate models that are validated to have high
inter-model dependencies.

Fig. 3 shows the values of our distance metric
between each of the ensemble members. In this figure,
lighter shades of red represent higher similarity in the
covariance matrices of the climate model outputs, and,
in turn, imply higher dependencies between the models.
The climate model outputs from the same Earth system
modeling group are highlighted by the blue boxes and
are known to have high inter-model dependencies for
reasons that include code and data sharing (see [14]).
The highlighted blue boxes show lighter shades of
red, and, in turn, demonstrate that the chosen geodesic
distance metric can be used to compare and cluster
climate model outputs in a non-parametric fashion.

Fig. 4 shows the experimental semi-variogram plots
of climate model outputs and statistically generated
samples from a number of methods. Given the semi-
variogram function, one can estimate the parameters
(range, sill, and nugget) of the covariance function.
Hence, semi-variogram plot, explained in detail in
[15], is a good tool in spatial statistics to visualize the
differences in covariance matrices.

The climate model outputs (as shown by the red lines
in Fig.4)) in the RCP2.6 and 4.5 ensembles (Fig.4)
(a), (b), (c), (d)) has higher inter-model variability in
its semi-variogram plots than the RCP8.5 ensemble
(Fig.4) (e) and (f)). Hence, the spread of the climate
model outputs realizations (as shown by the blue lines
in Fig. 4) using the igMVN method (Fig.4) (b) and (d))
is better than the sMVN method (Fig.4) (a) and (b))
in representing the underlying spread of the climate
model outputs. The wide spread in the igMVN samples
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Fig. 4. Diagnostic plots showing the experimental semi-variogram
function for various climate model outputs from CMIP5 ensembles
(red lines) and the statistically generated samples (blue lines) from
the standard multi-variate normal sampling method (sMVN) for
the (a) RCP2.6 ensemble, (c) RCP4.5 ensemble, and (e) RCP 8.5
ensemble. Realizations from our sampling method (igMVN) are
shown for the (b) RCP2.6 ensemble, (d) RCP4.5 ensemble, and
(f) RCP8.5 ensemble. The ellipse in each plot focuses on the spread
of the generated samples from each sampling method.

could be attributed to the sampling of the covariance
matrices from a manifold.

Fig.5 (a) shows the spatial field of the GFDL-ESM2G
model output (a member in the CMIP5-RCP2.6 ensem-
ble) overlaying the North American region. From the
semi-variogram plots in Fig.4 (a) and (b) we see that the
realizations from the sMSV method does not emulate
the climate data well, when compared to the igMVN
method, for the GFDL-ESM2G model. Similarly, in
Fig.5 (b) and (c) we see that there are more matching
pixels (as shown by the grey colored boxes) in the re-
alizations from the igMVN method (c) than the sMVN
method (a). Therefore, the igMVN method may have
some advantages over more traditional approaches;
hence, it would be worth pursuing this method to
compare and sample climate model outputs.

IV. DISCUSSION

In this paper, we have shown a non-parametric sta-
tistical emulator that can potentially mimic the existing
ensemble of climate model outputs for projections of
precipitation changes over North America and under
the RCP scenarios. Additionally, we have provided
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(a)
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Fig. 5. Diagnostic plots showing the spatial field of climate
variables from the Geophysical Fluid Dynamics Laboratorys cli-
mate model output of GFDL-ESM2G (a CMIP5-RCP2.6 ensemble
member). The spatial field shown here is restricted to the North
American region. (a) shows the climate model output, (b) shows
one of closest realization (from Fig. 4(a)) using the sMVN method,
and (c) shows one of closest realization (from Fig. 4(b)) using the
igMVN method. The coast is represented by black lines, and the
boxes represents patterns of similarity between the realizations and
the climate model output.

a method to compare climate model outputs, which
can be potentially used to investigate multi-model
interdependencies in the CMIP5 ensembles.

By providing an emulator and a method for inter-
model comparison, we can make the uncertainty in
future climate projections more comprehensive and
robust.
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