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An understanding of the Earth’s climate system benefits all sectors of the economy

and environment. Several challenges faced when modeling the Earth’s climate system

include: estimating geographical features of global datasets, making inferences from

multiple data-products, and providing diagnostic tools for complex Earth models. Ex-

isting geostatistical approaches address these challenges by modeling points on a high-

dimensional space. However, we know that many of the climate datasets additionally

have inherent high-dimensional geometric structures.

In this dissertation, I provide new insights into problems in climate data science by

exploring high-dimensional geometric structures on a manifold. First, I will discuss an

approach to improve future projections of a climate variable (e.g., sea-level changes)

by learning the scale of correlation, an essential regional feature of climate datasets.

Second, I will provide a new framework for data-fusion from multiple sources of infor-

mation for a given climate variable. Third, I will describe diagnostic tools we created

to compare and emulate various Earth system models from numerous international

teams and for differing future climate scenarios (e.g. precipitation changes in 2090).

With these contributions, I demonstrate that we can improve the inferences made from

geostatistical models by including information about the high-dimensional structures

of climate datasets. The proposed novel framework will benefit not only the climate

community but also decision makers when identifying plans to mitigate the impact of

climate change.
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Chapter 1

Introduction

1.1 Overview

Geostatistics is a branch of statistics that deals with estimation and simulation of con-

tinuous spatial phenomena from a sample of measurements [1, 2, 3]. Geostatistics finds

its use in various disciplines such as climate, epidemiology, environment, ecology, and

astronomy [4, 5]. In this thesis, our motivation for the geostatistical model development

is driven by its application to the climate data science problems of estimating sea-level

changes and simulating future scenarios of precipitation changes.

To study problems in climate data science, in this era of large datasets, one has

the possibility of exploiting high-dimensional geometric structures from the various

sources of datasets [5, 6]. Figure 1.1 gives an example of one such geometric structure

that arises from the regional properties of the natural phenomena. In the geosta-

tistical literature, modeling these structures using anisotropy and a spatially-varying

non-stationary Gaussian process has shown promise [1, 7, 8].

Albeit, until now, the climate data structures mentioned above have not been stud-

ied in its intrinsic metric space, specifically, the tangent spaces. Analyzing geometric

structures on tangent spaces have recently shown success in applications where the

data is represented as structure tensors, such as in computer vision and bio-medical

imaging [9, 10, 11].

Our essential insight for developing geostatistical models is the property of the

model’s core elements, such as covariance matrix and anisotropy, which is symmetric

positive definite (SPD). SPD space induces an intrinsic metric, i.e., a Riemannian met-

ric, on a manifold that provides us with the theoretical foundation for developing the
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(b)
0 4 7

Annual Avg., 2015 (mm)

(a)

Figure 1.1: Examples of regional geophysical phenomena are depicted within the red
boxes. We propose to represent regional climate data structures as a high-dimensional
geometric object on a manifold. The datasets shown here are from (a) tide-gauge sites
and (b) a precipitation data-product around North America.

high-dimensional manifold geostatistical models.

The two independently developed fields in statistics that this work is primarily

concerned with are: intrinsic statistics for sample points that lie on a manifold and

geostatistical models for sample points that lie on a globe.

Rao [12] in 1949 initially introduced the concept of intrinsic statistics for geometric

objects, such as probability distributions of exponential families. Around the same time,

Krige [13] in 1951 and Matheron [14] in 1963 developed the principles of geostatistics

for spatial predictions in mining operations.

For our methodological development, we propose to synthesize the two fields in

statistics mentioned above to study scientific problems in climate. Specifically, by

providing an extra layer of inference on the high-dimensional manifold, we aid the

classical geostatistical model development. The geostatistical model we focus on is that

of the non-stationary Gaussian process and multi-variate normal sampling scheme, for

climate datasets.

To begin, we explore and extract the high-dimensional information from the sea-

level change datasets in spatial m = 2 and spatiotemporal m = 3 dimensions (e.g., see

Figure 1.1a). By exploring the high-dimensional information, we show improvements

in estimating the parameters of a geostatistical model for the non-stationary process.
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Figure 1.2: Overview of climate data science cycle. The red text within the boxes
emphasize the focus of this thesis.

For higher dimensions, i.e., m ≥ 50, we explore the Earth system model’s outputs of

precipitation changes (e.g., see Figure 1.3, bottom row). Subsequently, by using high-

dimensional information, we show improvements in simulating Earth’s future climate

scenarios from a multi-variate normal sampling scheme.

Figure 1.2 places the focus of this thesis in an emerging field of climate data sci-

ence [15, 16, 17].

1.2 Geostatistics: Problem Statement

The most commonly used geostatistical model for understanding Earth’s underlying

physical process for climate and weather prediction assumes a real-valued stochastic

process {Z(s) : s ∈ G ⊂ Rdim} that is spatially continuous, and many-times differ-

entiable, over the globe G. In practice, we only have finite collection of observations,

Y (s) = {Y (s1), . . . , Y (sn)}, at geolocations, s = {s1, . . . , sn}, where n = (1, 2, . . .)

and si ∈ Rdim. Then the canonical objective is to make inference about the underlying

process, Z(·), from the observations, Y (s).

For notations let the covariate (or feature) space be denoted as x(si) ∈ Rm, where

x(si) = {x1(si), . . . , x
m(si)}. For example, in the climate-context the covariate space
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(a) RCP 2.6 (b) RCP 8.5

Figure 1.3: End of the 21st-century projections in temperature (top row) and precipita-
tion (bottom row) around North America from the Community Climate System Model
(CCSM version 4.0). The CCSM4 model is developed at the National Center for At-
mospheric Research, USA. The units for temperature are ◦C and for precipitation are
% change per ◦C change in global mean temperature. The columns show two scenar-
ios: (a) representative concentration pathways (RCP) 2.6, i.e., when the greenhouse
gas (GHG) emission is sustainably controlled, and (b) RCP 8.5, i.e., when the GHG
emission is not controlled.

can be viewed as {latitude, longitude, elevation, time}i. We also refer to Rm as the

high-dimensional covariate space, and, sometimes interchangeable use it to denote Rdim

when the context is clear.

Next, we briefly describe the two geostatistical inference problems of estimation and

simulation where we explore our high-dimensional manifold approach.

Geostatiscal model for estimation

To learn the underlying stochastic model from the data, an important ingredient is

the covariance function, k(s, s′) = Cov{Z(s), Z(s′)}. The covariance measures the
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relation between two stochastically independent geolocations s and s′. For example,

the covariance k(New York, Florida) tells us how the sea-level changes around New

York would affect the changes in Florida, and vice-versa. Our goal is to design the

covariance structure that captures this complex relationship of physical processes from

the available datasets.

Most physical and dynamical systems have a covariance structure that is anisotropic

and non-stationary [5]. Intuitively, a non-stationary process means that the parameters

of the underlying distribution, such as the mean and variance, varies spatiotemporally.

Similarly, the anisotropic process, tells us that the properties of the process are direc-

tionally dependent. The most straightforward case of anisotropy, and the one we choose

to model, i.e., geometric anisotropy, relates to the differing range of correlation between

geolocations for each input space axis.

Spatial non-stationary covariance with geometric anisotropy has been widely stud-

ied in the field of geostatistics [5]. The two primary schools of thought are that of

deformation models and spatially varying models [18]. Deformation model transforms

the input space to a space that is stationary and isotropic [19], while spatially varying

model convolves the kernel at each location with Brownian noise [7, 8].

Both of the above mentioned spatial non-stationary models have computational lim-

itations for the parameter estimation in high-dimensional covariate space. Additionally,

these methods, have only considered the correlation between geolocations and not be-

tween the regional structure of the underlying process from single and multiple sources

of datasets. We show how the Riemannian manifold representation improves the afore-

mentioned design limitations of the non-stationary covariance structure, and thereby

improves the estimate of the sea-level changes in spatial m = 2 and spatiotemporal

m = 3 dimensions.

For estimation and prediction, the standard non-parametric regression model that

is extensively applicable to physical processes is the Gaussian process model (GP),

also known as Kriging in geostatistics. One of the reasons GP is popular is because

it can be completely specified by its first and second-order moments, i.e., mean and

covariance functions. We refer to [3] for GP’s in-depth theoretical exposition, and [1]
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for its methodological applicability to physical processes.

Geostatiscal model for simulation

We now turn our attention to the geostatistical sampling problem to show the applica-

bility of the manifold representation of high-dimensional (m ≥ 50) covariance structures

for physical processes. Specifically, we study a significant problem in climate science,

which is that of simulating various plausible future climate scenarios from the exist-

ing ensemble of climate model outputs [20, 21]. For example, Figure 1.3 shows the

future climate scenarios of temperature and precipitation around North America from

an Earth system model (ESM).

For simulating the spatial field, {Z(s)}, we focus on improving the vanilla multi-

variate normal sampling scheme [4, 22, 23]. This straightforward sampling scheme

uses an affine transformation Z = µ + Aε, where Z = (Z(s1), . . . ,Z(sm))T is a m-

dimensional (multi-variate) vector, A is the affine matrix such that AAT = Σ, and

ε ∼ N (0, I) is a random normal vector. Furthermore, this sampling scheme is a basic

component for a more widely used framework of hierarchical Bayesian models [6].

In the geostatistics literature, parameters of a multi-variate normal sampling scheme,

such as mean and covariance, are estimated by assuming independence between the

replicates of the observations. In our application, the replicates of climate model out-

puts are known to have dependencies. For example, the multiple images in Figure 1.3 are

known to have various inter-dependencies. Additionally, the vanilla sampling scheme

and its extensions to the hierarchical Bayesian model fails to embed spatial patterns

between the different climate model outputs [24, 25].

To address the above sampling issues, we represent the initial estimates of the co-

variance structure on a Riemannian manifold of symmetric positive definite matrices,

Σ ∈ SPD(m), of dimension m. This reformulation provides not just an unbiased estima-

tor, but also a distance function to compare the dependencies between various sources

of the datasets, which in our case are the various climate model outputs.

Our primary motivation for the geostatistical model development is that of im-

proving the understanding of climate-related problems. In the next section, we briefly
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describe the four scientific problems where we apply our proposed high-dimensional

manifold geostatistical models.

1.3 Application of Geostatistics: Problems in Climate Science

The 20th-century global mean sea level (GMSL) is estimated to have increased at a

mean rate of 1.6 to 1.9mm/year [26, 20]. Additionally, from 1990 to 2010, the GMSL

rate of change has risen to 3.0 ± 1.7mm/year [27, 28]. Due to the implications of sea-

level changes, it is projected that 153 million lives are going to be affected by the end

of this century [29].

Estimating regional sea-level changes

Estimating the impact and extreme events due to regional sea-level changes (ReSL)

can be far more significant than the global mean, i.e., GMSL, [30, 31]. Additionally,

ReSL can have a large variability compared to GMSL due to its complex spatial patterns

resulting from ocean dynamics, sea-floor movements, and water mass redistribution [20,

32, 33].

Most climate science approaches rely on the known geophysical and geographical

literature to provide ReSL estimates [34, 31, 35]. In contrast, we provide a systematic

data-driven approach to incorporate spatial structures for estimating ReSL.

To show the applicability of the proposed framework for estimating ReSL we use

the data-products of tide-gauge records and satellite altimeter, around North America.

The tide-gauge records measure the sea-level changes at coastal locations around the

global network, while the satellite altimeter measures the spatially dense sea surface

height over the oceans.

Moreover, the data-product of tide-gauge records is provided by the permanent

service for mean sea level (PSMSL) [36], and the satellite altimeter datasets are from

the TOPEX and Jason satellites [37, 38].
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Inference from multiple sources of datasets

With the advent of the data era and remote sensing technology, climate community

has become increasingly interested in utilizing measurements from various sources to

explain the climate-related processes. For example, one question addressed in our work

is how to use both the tide gauges and satellite altimeter to improve our understanding

of sea-level changes.

Both tide gauges and satellite altimeter provides measurements at different spa-

tiotemporal scales. Compared to satellite altimeter measurements the tide-gauge mea-

surements provide more information about the historical sea levels. Even so, tide-gauge

measurements are spatial very sparse when compared to satellite altimeter measure-

ments.

Chambers utilized measurements from multiple data sources to estimate GMSL us-

ing a standard principal component analysis (PCA) [39]. Note, in the climate commu-

nity, PCA is commonly known as empirical orthogonal functions (EOF). Recently, [34,

26, 28] have improved GMSL estimates by utilizing both tide-gauges and satellite al-

timeter. For ReSL, [30] provides an EOF-based methodology to improve regional esti-

mates.

Limitations of standard PCA (i.e., EOF) are studied widely in the machine learning

community, and many variants of the standard PCA techniques are continually ad-

vancing. Many of the advanced PCA techniques also incorporate the non-linearity and

intrinsic metric of the data [16, 17, 40, 41]. For scientific problems, one major draw-

back of the out-of-box machine learning methods is the lack of data. This lack of data

has been successfully considered in the geostatistics literature, especially in Bayesian

settings [6].

We are interested in improving the ReSL estimates using the limited records of sea

level from multiple sources of datasets. Hence, as an extension to our high-dimensional

manifold geostatistical model, we provide a novel framework for data fusion of tide-

gauge and satellite altimeter to improve the estimates of ReSL.
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Intermodel-comparison of Earth system models

Other climate-related variables, such as precipitation, also face challenges that are

similar to sea-level changes i.e., non-stationarity, anisotropy, and lack of records [42, 43].

For example, Figure 1.1b shows regional patterns of an annual average of precipitation

from the global precipitation climatological project (GPCP) [44, 45].

Furthermore, analysis of a climate-related variable from Earth system models’ (ESM)

simulations have the potential to complement the observed records when performing

statistical inference. One reason to analyze the ESM outputs is that, compared to

observed records, simulation outputs from ESM have a lot more data.

Figure 1.3 shows examples of climate model output’s precipitation and tempera-

ture projections from Community Climate System Model (CCSMv4) [46] around North

America. The end of the 21st-century projections shown in Figure 1.3 is for two different

greenhouse gas emission (GHG) scenarios.

Climate models, such as CCSMv4, provide simulations of the Earths’ past, present,

and future states. These fully-coupled climate models are developed by considering

earth’s important processes of atmosphere, ocean, land surface and sea-ice. Similar to

CCSMv4, numerous other international modeling teams are also involved in developing

Earth’s complex climate models. Collections of these models are assembled by the Cou-

pled Model Inter-comparison Project - 5 (CMIP5) initiative to analyze the effectiveness

of various climate models and their projections [47, 48, 49].

One of the scientific questions that CMIP5 is interested in is intermodel compari-

son [49]. Diagnostic tools, such as intermodel comparison, are crucial for understanding

the various causes of disagreements between models. Additionally, the diagnostic tools

also aid in evaluating and improving the performance of model projections of climate

change.

From a climatological perspective [21, 50], efforts towards categorizing various cli-

mate model outputs are made based on their developmental cycles and the different

Earth processes that are incorporated into the individual models. Several other work

by [24, 51, 52, 53, 54] have developed a multi-variate Bayesian framework to compare
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climate models.

To statistically compare climate model outputs it is imperative to consider the

data’s high-dimensional space. For example, the process sampled at a 1 deg global

resolution results in a 360 ∗ 180-variate analysis. For such high-dimensional spaces,

the Euclidean metric is known to be quantitatively ineffective due to it’s “curse of

dimensionality” [55, 56, 57], while an intrinsic space representation provides a mean-

ingful proximity measure in high-dimensional data sets [58, 59]. Most of the previous

approaches in the multi-variate analysis for climate model outputs have not consid-

ered the intrinsic space representation of the climate model outputs. Hence, in this

thesis, we show a method to represent the climate model output data on an intrinsic

high-dimensional space, i.e., a Riemannian manifold, and thereby provide an improved

metric to compare climate models.

Emulate future climate projections

Another aspect of the CMIP5 initiative is that of providing an emulator for generating

multiple, feasible, future climate scenarios [20, 24]. Future climate scenarios in CMIP5

that depend on GHG emission are also called representative concentration pathways

(RCP) [60]. In CMIP5, currently, there are 62 ensemble members from 29 modeling

groups that provide some or all of the four different future climate scenarios, i.e., RCP

2.6, 4.5, 6, and 8.5.

By developing a statistical emulator, we can quantify the uncertainty in the existing

model outputs, be resourceful in generating the “unseen” future climate states, and,

thereby, provide policymakers with a better climate impact analysis [51, 61, 62].

Earth system models (ESM) provide climate model outputs based on various forcing

conditions and spatiotemporal scales; but, ESM requires a super-computer that runs for

a few months to produce the outputs of interest. In comparison, the statistical emulator

that considers the existing ensemble of model outputs provides a differing realization

by estimating the ensemble’s underlying distribution within a few hours on a laptop.

Realizations of the high-dimensional climate model output require unbiased esti-

mates of the underlying distribution. For an unbiased estimate, it is crucial to consider
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inherent dependencies between the ESM models. Dependencies occur due to com-

mon code base in the developmental cycle, initialization and parameterization of the

geophysical processes, and the usage of common data products [21]. Such inherent

dependencies between ESM models and its implication on the climate projection is not

comprehensively known [50, 63]. Hence, to circumvent the model dependencies, we

provide a clustering framework on the model output’s data space, and, thereby, provide

unbiased estimates of the ensemble’s distribution.

In summary, a typical climate data science cycle, as shown in Figure 1.2, and

from a statistical machine learning perspective includes the following steps: 1) col-

lect observations of the natural phenomena, 2) pre-process the datasets, 3) explore

the information that serves a particular scientific problem, 4) leverage the exploratory

analysis to improve geostatistical models, 5) use improved geostatistical models to pro-

vide data-products that explain the reality of the natural phenomena, and 6) finally,

communicate the results to decision makers for more effective policy making [20]. This

thesis is mainly concerned with the steps three and four as described above.

In the following sections, we provide an outline of the thesis and our contribution

of each of the above four scientific goals.

1.4 Thesis Outline

This thesis is organized into seven chapters. In Chapters 2 and 3, we provide a brief

introduction to statistical manifold and geostatistics, respectively. In Chapters 4 and 5,

we propose non-stationary GP models and further apply to spatial (m = 2) and spatio-

temporal (m = 3) datasets. In Chapters 6, we propose a framework to compare and

emulate model outputs from various sources of datasets (m ≥ 50). Finally, in Chapter 7,

we summarize our findings and provide suggestions for future improvements. Summary

for each of the chapters is provided below:

In Chapter 2, we give a brief overview of relevant concepts concerning the Rieman-

nian manifold and its application to a statistical manifold for SPD matrices. Specifi-

cally, we explain the differential geometry concepts of tangent spaces, connections, and
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geodesics. Furthermore, we describe the generalized normal distribution on a statistical

manifold, and sketch schemes for estimating the parameters of the distribution. These

concepts are applied to improve the geostatistical models.

In Chapter 3, we explain the background of geostatistical model development.

The key concepts illustrated in this chapter are the non-stationary covariance functions,

geometric anisotropy, multi-variate normal sampling scheme. In the later chapters, a

framework for improving these geostatistical concepts is proposed.

In Chapter 4, we propose a framework for estimating the parameters of the

spatially-varying non-stationary GP model. The methodology is proposed on spatial

and spatiotemporal GP models by using the high-dimensional representation of the ge-

ometric anisotropy and a Markov Chain Monte Carlo (MCMC) scheme for finding the

GP parameters. We call this model a high-dimensional manifold non-stationary Gaus-

sian Process model (HD-NSGP). Furthermore, we provide simulation studies that em-

ulate the characteristics of a regional climate dataset, such as sea-level changes around

North America. For evaluation, we present experiments related to the sea-level change

dataset, including tide-gauge observations, satellite altimeter, and Glacial-isostatic ad-

justment. Finally, the improvement of the proposed model is compared with a climate

methodology for estimating the regional sea-level changes [34], a stationary GP model

with a Matérn covariance function, and a non-stationary GP method [8].

In Chapter 5, we propose the data-fusion GP model for addressing the scientific

problem of inference from multiple sources of datasets. We call this model a data-

fused non-stationary GP model (DF-NSGP). Furthermore, we provide an algorithmic

procedure for estimating GP parameters for the data-fused, spatially-varying, and non-

stationary GP model. The evaluation procedure in this chapter is similar to Chapter 4.

In Chapter 6, we propose a distance function for comparing the ensemble of

climate model outputs from CMIP5. Based on the distance function, we then propose a

statistical emulator to simulate projections from an existing ensemble of climate model

outputs. The dataset chosen for evaluation is that of precipitation changes around

North America from the various RCP scenario and projections for 2090. The proposed

distance function is compared with the Euclidean distance [64] and a climate genealogy
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of CMIP5 [21]. Similarly, the proposed emulator is compared with the vanilla multi-

variate normal sampling scheme.

In Chapter 7, we conclude by summarizing the findings of the proposed high-

dimension manifold geostatistical models given in Chapters 4-6. Furthermore, we pro-

vide pointers to the shortcomings and potential improvements in this new approach of

developing geostatistical models.

In Appendix A, we provide formulations related to the distance functions for the

statistical manifold and spatial processes. In Appendix B, numerical schemes used for

the intrinsic statistics and spatial models are sketched out. In Appendix C, notations

and acronyms used in this thesis are listed.

Some notes on the notations used in this thesis:

For notations related to geostatistics, we follow Stein [3] and Diggle [1]. For no-

tations related to the statistical manifold, we follow Amari [11]. However, when the

notations are conflicting between the two statistical fields, we introduce appropriate

statistical-manifold-related notations to maintain consistency with the geostatistics lit-

erature.

Where necessary we provide alternative terminologies from the machine learning

and climate communities for specific geostatistical definitions. Next, we state some

consistent notation style throughout this thesis.

Bold-faced symbols represent vector-valued variables. Calligraphic capital letters

are reserved for representing spaces or a set. Subscript indices relate to the variable’s

input space dimension, e.g., number of samples on a globe, n. Superscript indices

refer to the variable’s covariate space dimension, e.g., number of samples in the high-

dimensional space, m. A hat or a bar on a variable represent estimates from the given

samples.

1.5 Thesis Contribution

The overarching contribution of this thesis is in three different areas of research, i.e.,

geostatistics, climate science, and statistical manifold. The specific contribution of this
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thesis is that of representing high-dimensional geometric structures on a statistical man-

ifold, and, thereby, improving the geostatistical models of estimation and simulation.

Furthermore, we show the applicability of our proposed models to climate data sci-

ence problems, such as estimating the regional sea-level changes and simulating future

precipitation projections.

Table 1.1 gives a concise breakdown of the original contributions in the above men-

tioned three fields, its associated references, and pointers to the thesis chapters.

Parts of my contributions in this thesis have been presented in the following papers

and are referenced in Table 1.1:

(I) C. Dalal, V. Pavlovic, and R. Kopp, Intrinsic non-stationary covariance function

for climate modeling, ArXiv e-prints,1507.02356, 2015.

(II) C. Dalal, V. Pavlovic, and R. Kopp, Estimating the ocean surface level using the

intrinsic non-stationary covariance function, American Geophysical Union, 2015.

(III) C. Dalal, V. Pavlovic, and R. Kopp, Sea level estimation using the Riemannian

manifold and a non-stationary covariance function, Fifth International Workshop

on Climate Informatics, ISBN: 978-0-9973548-0-5, 2015.

(IV) C. Dalal, D. Nychka, and C. Tebaldi, Covariance structure analysis of climate

model output, Sixth International Workshop on Climate Informatics, ISBN: 978-

0-9973548-1, 2016.
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Table 1.1: Thesis outline and overview of the thesis contributions.
In

C
h

ap
te

r Contributions

Dim
(m)

Geostatistical Models Climate Science Statistical
Manifold

In
Ref.
Above

4 =
2, 3

• Framework for spatially
varying non-stationary
Gaussian process (GP)
model using a
high-dimensional
representation of
covariate space or
geometric anisotropy
(HD-NSGP)

• Simulation study for
non-stationary,
spatially-varying,
anisotropic, and spatial
datasets

Estimating
regional sea-level
trends without
geophysically
constraining the
dataset

Clustering or
sampling
symmetric
positive definite
(SPD) matrices

(I),
(II)

5 =
2, 3

Framework for estimating
from multiple sources of
non-stationary GPs
(DF-NSGP)

Data-fusion of
tide-gauge
observations with
satellite altimeter
dataset

A mapping
function between
two SPD matrix
manifold
distributions

(III)

6 ≥
50

Framework for comparing
ensemble members using
the intrinsic space
representation of the
covariance structure

A metric to
compare
ensemble
members in
Climate Model
Inter-comparison
Project (CMIP5)

Application of
Riemannian
metric to
genealogy

(IV)

6 ≥
50

Framework for a
geostatistical emulator

Quickly generate
future climate
scenarios from
existing climate
model outputs

Multi-variate
normal sampling
scheme for
high-dimension
SPD matrix
manifold with
dependent
samples

(IV)
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Chapter 2

Relevant Concepts from High-Dimensional Manifold

2.1 Introduction

In this chapter, we introduce concepts from the statistical manifold literature. For

our geostatistical application, we are specifically interested in the multivariate family

of distribution on a manifold; hence, we call our framework as the high-dimensional

manifold geostatistics.

Intuitively, a manifold is a set of points represented by its coordinate system. When

the abstraction of points represents either a probability space or a symmetric positive

definite matrix, the manifold is called a statistical manifold. Furthermore, when the

probability distribution is from an exponential family and the manifold is equipped with

a Riemannian metric, the theory is popularly known as information geometry [11].

For our framework, we restrict ourselves to the exponential families of distribution.

One example is the multi-variate normal (MVN) with zero-mean and variance. MVN

has a one-to-one correspondence with the symmetric positive definite matrix (SPD) of

the same dimension. Note, in this chapter the dimension, m, of a manifold, S(m), is

the number of coordinates required to represent the set of points.

Additionally, we are interested in the inference of complex climate-related objects

that are invariant under reparameterization. In other words, we want an estimator for

high-dimensional geometric objects that preserve the unbiased and uniformly-minimum

variance under the coordinate transformation. The tools developed for these function-

ally invariant estimators are known as intrinsic statistics [9, 65]. An extrinsic estimator,

in comparison, relies on projective spaces such that the manifold is embedded in the

ambient Euclidean space. The statistical tools for extrinsic statistics are also commonly
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studied under directional statistics [66, 67].

To estimate the underlying distribution of our datasets, which has a small sample

size, we are interested in a consistent and well-approximated manifold. Hence, we chose

to work with a finite dimensional, geodesically complete, Riemannian manifold [68, 69].

Figure 2.1 illustrates the various concepts of intrinsic statistics on a statistical manifold

that we briefly describe in this chapter.

Note, for our notations; we denote a smooth manifold as S. When points on a

smooth manifold are a family of probability distributions, we call it the statistical

manifold and denote it as M. Furthermore, in this chapter, we relax the bold-faced

vector-valued notations when the context is clear.

�1

Figure 2.1: A manifold view of high-dimensional geometric objects and their intrin-
sic statistics. The ellipses depict two-dimensional geometric objects, which are also
symmetric positive definite matrices.

The concept of probability distributions on a manifold was first introduced by C.R.

Rao in 1947 [12]. Rao made a key observation between differential geometry and the



18

space of probability distribution by determining a Riemannian metric on a manifold

using the Fisher information matrix. Later, Chentsov provided the foundational the-

orem that the Fisher information metric on statistical models is the only Riemannian

metric that is invariant under sufficient statistics [70].

Furthermore, Efron showed the statistical curvature of a one-parameter model and

its importance in the asymptotic theory of statistical estimation [71]. Moreover, Dawid

introduced the differential geometry concept of connections on the probability spaces [72].

Amari and Nagaoka generalized the information geometry concepts to α−connection

and dually flat spaces [73, 74, 75, 76].

Recently, the statistical manifold has found a lot of success in medical imaging [9,

10, 77, 78], computer vision [79, 80, 81, 82], and machine learning applications [83, 84,

85, 86]. Amari has also applied the statistical manifold to neural networks using the

concepts from multi-terminal information theory and neuro-manifold [11].

For further exposition of various theoretical developments in the statistical manifold

literature, we suggest [11], and for differential geometry concepts, we suggest [87].

In the following section, we give an overview of essential differential geometry con-

cepts and their analogous statistical manifold concepts. In Section 2.3, we provide

formulations for estimating intrinsic statistics on a statistical manifold, especially, for

an MVN family of distribution. Note, the explicit pseudocodes for computing the for-

mulations, that are mentioned in Section 2.3, are outlined in Appendix B.1.

2.2 Riemannian Geometry

2.2.1 Manifold

Definition of a manifold: Let S be a set. If there exists a set of coordinate systems, A,

for S such that: (i) each element of ϕ = [ξi] = [ξ1, .., ξm] in A and ψ = [ρi] = [ρ1, .., ρm]

in A is a one-to-one mapping from S to some distinct open subset of Rm, and (ii)

for all ϕ,ψ ∈ A, the function ψ ◦ ϕ−1 is a C∞ diffeomorphism, then (S,A) is a m-

dimensional C∞ differential manifold, otherwise known as a smooth manifold. The

coordinate transformation ψ ◦ ϕ−1 : [ξi] → [ρi] is a C∞ diffeomorphism. Therefore,
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ψ ◦ ϕ−1 and its inverse ϕ ◦ ψ−1 are infinitely many times differentiable.

Definition of a statistical manifold: Let M be a finite-dimensional manifold, where

the points on the manifold are a parametric family of probability distributions, {p(x; ξ) :

ξ ∈ Ξ ⊂ Rm}, and the mapping, ξ 7→ p(x; ξ), is a diffeomorphism. Then, the statistical

models, p(x; ξ), can be described as points on a m-dimensional manifold, M.1 Here,

x is the event space over a finite set, X , of probability distributions, Ξ is the set of

coordinate systems, and ξ = [ξ1, ..., ξm] is the real-valued parameters of the probability

distribution.

Intuitively, a statistical manifold, M = {pξ}, describes the continuously-varying

parameters, ξ, of the family of probability distributions as the real-valued coordinates

of the manifold, M. For example, the multivariate normal distribution with mean, µ,

and covariance, Σ, can be described as a m-dimensional manifold,M(m,R), as follows:

M = {ξ = [µ,Σ] | µ ∈ Rk, Σ ∈ Rk×k, ∀x ∈ X}, (2.1)

where X = Rk, m = k + k(k+1)
2 , and Σ ∈ SPD is a matrix of dimension k(k+1)

2 .

Note, when µ = 0 points on M are entirely in the positive real numbers, R+,

and represented by the covariance matrix as {ξ = [Σ] ∈ SPD (m = k(k+1)
2 ) ⊂ Rm+}.

Figure 2.1 gives a visual depiction of this manifold,M, where the ellipses, Σ, represent

the SPD matrices.

One way to represent M is using functions {C,Fi} on X such that p(x; θ) =

C(x) +
∑m

i=1 θ
iFi(x). In the literature, this representation is also called a mixture-

representation. Another representation that is commonly used for the exponential fam-

ilies of the distribution, such as MVN, Poisson, etc, is the exponential-representation.

In this case, p 7→ log p. Moreover, the statistical manifold of exponential family distri-

butions are also called a flat-manifold, and the m-dimensional manifold,M = {pθ}, on

X can be written as p(x; θ) = exp
[
C(x) + θiFi(x) + ψ(θ)

]
.2 Here, ψ(θ) can be found

1In some papers, e.g., in [11], the statistical manifold, M, is also called a statistical model. Addi-
tionally, note that the statistical manifold, M, is a subset of family of probability distributions, P(X ),
where P(X ) , {p : X 7→ R | p(x) (∀x ∈ X ),

∫
p(x)d(x) = 1}.

2Einstein notation: θiFi =
∑m
i=1 θ

iFi.
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from the normalization
∫
p(x; θ)dx = 1.3

Further generalization to an infinite-dimensional manifold, S, can be carried out by

considering the probability distributions over a measurable space (X , B, ν). Here, X

is a set of probability distributions, B is the Borel field, and ν is the measure for the

event space, X . Such spaces are also named as a Fréchet manifold [88].

A useful analogy is analyzing M(m,R) as the quotient space of GL(m)/O(m), i.e.,

a homogenous space of the Lie group (GL(m,R)). Hence, the statistical manifold can

also be analyzed using its associated Lie algebra (gl(m,R)). For analysis, it is further

assumed that the support, supp(Pξ),
4 is constant w.r.t ξ, i.e., for each set of coordinates,

ξ, there is one family of probability distributions, {pξ}. Finally, to apply the above

theory of the statistical manifold to geostatistical problems, we restrict our analysis

to the case of a finite-dimensional manifold that is endowed with a global coordinate

system.

2.2.2 Tangent Space

A local coordinate system induces a basis for the tangent space. For example, in

Figure 2.1 the neighboring ellipses, Σi, are projected onto the tangent space, TΣ̂M,

at Σ̂ using the exponential maps, expΣ̂(Σi). In this section, we briefly introduce the

tangent space and local projections.

Definition of the tangent space: The m-dimensional tangent space at p ∈ S, TpSm,

is given by the span of m-tangent vectors, γ̇(a) = γ̇i(a) ( ∂
∂ξi

)p, where ∂
∂ξi

is the natural

basis of the coordinate system [ξi] and γ : I → S is a C∞ curve on the manifold.

Here, the curve γ is also a one-to-one function from I ⊂ R to the manifold S, such that

γi(t) , ξi(γ(t)) is C∞ for t ∈ I and γ̇(a) = (dγ
dt )p for a ∈ I is the tangent vector at point

p ∈ S. Let c be the collection of all curves passing through the point, p, on the manifold.

Then, the tangent space can be written as TpSm = { ci ( ∂
∂ξi

)p | [ci, ..., cm] ∈ Rm }.

Intuitively, the tangent space TpS is derived by locally linearizing the manifold S

3ψ(θ) = log
∫

exp
[
C(x) + θi + Fi(x)

]
dx.

4supp(p) , {x|p(x) > 0}.
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around p. For example, the tangent plane for a unit sphere can be explained as

TpS(m=2) = {γ̇ ∈ Rm+1 | ∑3
j=1 γ̇j pj = 0} or {x0(x− x0) + y0(y − y0) + z0(z − z0) =

0 : x0, y0, z0 are the coordinates and x, y, z is the point on the sphere}.

Tangent vectors on a smooth manifold can be seen as operators, or directional

derivatives, of the function space along the curve γ(t). In comparison, for statistical

manifolds, the parameterization of the probability model, p(x; ζ), gives the coordinates

ofM. Hence, the tangent vectors for the statistical manifold are derivatives of functions

in their canonical coordinates, such that (∂i)ξ = ∂ipξ for a mixture (m)-representation

and (∂i)ξ = ∂i log pξ for an exponential (e)-representation.

The tangent space for the m-representation is a linear subspace,5 such that TpMm =

{A ∈ RX | ∑x A(x) = 0} and the tangent vectors, X ∈ TpMm, are elements of the

linear subspace,
∑

xA(x) = 0. For the e-representation, the tangent space is then

described as follows: TpMm = {A ∈ RX | ∑x p(x)A(x) = 0}. For example, in MVN,

i.e., {p(x; θ)}, the tangent space, TpMm, is represented by the tangent vectors as:

{θi =
∑
j

(Σ)ij µj , θ
ii = −1

2
(Σ−1)ii , θij = −(Σ−1)ij | (i < j)}, (2.2)

and the functions on X are {C(x) = 0, Fi(x) = xi, Fij(x) = xixj : (i ≤ j)}.

The relation between two tangent spaces, TpS and Tp′S, on a manifold has a struc-

ture that is given by the affine connection. Intuitively, the affine connection gives a

1− 1 mapping between Tp and its neighbors p′. When the manifold is endowed with a

Riemannian metric, which we will cover in the next section, the canonical affine con-

nection is also called the Levi-Civita connection, and the curve γ(t) joining p and q is

called the geodesic curve, i.e., the shortest local distance between the two points on a

manifold.

The projection of the neighborhood of points on a manifold, S, to the tangent space,

TpS, along the geodesic curve, is given by the exponential map.6 For the curve γ(t), if

5Note, the real-valued function on X is defined as RX , {A|A : X 7→ R} and the affine subspace is
defined as A1 , {A|

∑
xA(x) = 1}.

6Exponential map on S can also be seen as a generalization to the well-known exponential function
on R.
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γ̇(0) = v is the tangent vector at p, such that γv(0) = p, then the exponential map is

defined as expp(v) = γv(1).

Intuitively, the exponential map moves a point on the manifold by a unit distance

along the direction of the tangent vectors. For example, if you are standing on the

north pole viewing the Earth, then the exponential map of the points on Earth when

projected onto the tangent space at the north pole represents all of the longitudinal

lines as straight lines. This mapping in cartography is also called the polar azimuthal

equidistant projection, and, aptly, is the emblem of the United Nations flag.

Only when the manifold is geodesically complete it’s possible to define the expo-

nential map on the entire tangent space. Additionally, the uniqueness of the geodesic

curve is derived by assuming the non-existence of cut-locus7 points on S. For a compact

Lie group,8 the exponential map is also given by Exp : gl 7→ GL, i.e., a map from Lie

algebra to Lie group. Conversely, the logarithm map is given by Log : GL 7→ gl.9

For MVN(µ,Σ), with a zero or fixed mean, we can write the family of probability

distributions as p(x, θ) = Σ ∈ SPD(m,R) 6 GL(m,R), i.e., a space of m × m real

symmetric positive definite matrices.10 The tangent space is then described by its Lie

algebra, gl(m,R), which is a group of real symmetric matrices, S(m,R). Moreover, the

exponential map coincides with the Riemannian exponential maps and is described as

Exp : S(m) 7→ SPD(m). For the curve, Σ(t), where t ∈ [a, b] ⊂ R, the formulations

for the exponential map are given by exp(tX) = Σ(a)−
1
2 Σ(t)Σ(a)−

1
2 and the tangent

vectors are Σ̇(a) = Σ(a)
1
2XΣ(a)

1
2 ∈ S. Formulations and theorems related to the above

expression can be found in [68].

A comprehensive understanding of tangent and projective space requires exposition

to tensor field, submanifold, fiber bundle, parallel transport, curvature, and inner prod-

uct space. For definitions related to differential geometry, we suggest [87, 89], and for

7Cut-locus are points near p on S where the geodesic curve is no longer minimizing.

8For any compact Lie group, there exist a bi-invariant Riemannian metric.

9For notation, we use Exp or expΣ Σ for the exponential map, and, exp for the natural exponential
function.

10In group theory, SPD is also denoted as S+, and is a subgroup of a general linear group, GL(m,R).

Furthermore, the elements of this space, θ, are embedded in R
m(m+1)

2 .
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the analogous techniques related to the statistical manifold, we suggest [11]. We do

not provide all of the formal definitions of the manifold so that we can primarily focus

on the computational aspect of information geometry. The computational aspect, as

elaborated later in Section 2.3, aids us in improving the geostatistical models.

2.2.3 Distance Function

A Riemannian manifold, (S, g), is a C∞ differential manifold, S, endowed with a Rie-

mannian metric, g.

Definition of a Riemannian metric: The Riemannian metric, g, is entirely defined

by its local inner product on the tangent space, such that gp(·, ·) : TpS × TpS → R is

symmetric, bi-linear, positive definite, and C∞ differentiable at p ∈ S. Additionally,

the mapping g : p 7→ 〈·, ·〉p from p to TpS is a tensor field, and the inner product of

tangent vectors X,X ′ ∈ TpS is given by 〈X,X〉p = gij(p)X
iX ′j . Here, [gij(p)] = G(p)

is a SPD matrix and is also known as a m×m Gram matrix.

Let γ : [a, b] → S be the Riemannian curve. Then, its length, or norm, is defined

as:

L(γ) , ‖γ‖ =

∫ b

a

√
gij γ̇iγ̇′j dt, (2.3)

and the distance between two points p, q ∈ S is dg(p, q) = infγ∈Γ(p,q) L(γ). Here,

Γ(x, y) is a set of piecewise differentiable curves connecting p and q. The minimum

curve, infγ∈Γ(p,q) L(γ), on a manifold with an affine connection is called the geodesic

distance. For example, on a sphere the geodesic distance is described by the great circle

distance.11

Following the construction of Rao in [12] and Chentsov in [70], the Gram ma-

trix, G(p), on a manifold, S, coincides with the Fisher information matrix, G(ξ), on

a statistical manifold, M, such that gij(ξ) , Eξ[∂ilξ ∂jlξ] is the Fisher metric. Here,

lξ(x) = log p(x; ξ), and the coordinates, {∂1lξ, ..., ∂mlξ}, is linearly independent.12 The

11Note, geodesic distance is the locally short distance associated to the velocity vector, and not the
shortest distance. Intuitively, imagine two points that are connected by an elastic string. Then, the
path followed by the tensed string is given by the geodesic curve.

12Here, log is the natural logarithm and Eξ is the expectation w.r.t. p(x; ξ).
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Fisher metric is invariant under the coordinate system transformations, uniquely de-

termined, and is the sufficient statistic for the exponential family of probability distri-

butions.

For the MVN distribution, let Σ : t 7→ Σ(t) ∈ M,∀t ∈ [t1, t2] ⊂ R denote a

curved segment between two parameterized distributions, p(.|Σ1) and p(.|Σ2). Then,

the geodesic distance between the family of multivariate normal distributions, with a

common mean vector and different covariance matrices, is given by:

D(Σ1,Σ2) = ‖LogΣ1
(Σ2)‖ =

√
1

2
tr(log2(Σ

−1/2
1 Σ2Σ

−1/2
1 ))

=

√√√√1

2

m∑
i=1

log2(λi), (2.4)

where λi denotes the m-eigenvalues of the matrix (Σ
−1/2
1 Σ2Σ

−1/2
1 ) ∈ S+. For visualiza-

tion, Figure 2.1 depicts the geodesic distance, dg(Σ1, Σ̂), between two ellipses, Σ1 and

Σ̂, on the statistical manifold, M.

Equation 2.4 can be directly derived from Jensen’s theorem [90]. Additionally, [68]

derives the explicit form, as given in Equation 2.4, of the geodesic distance for the

Fisher metric on the manifold S+(m,R). Note, there are infinitely many connections

on a manifold, and, consequently, infinitely many ways to define a Riemannian metric

that is associated with the connection. The above definition of the Riemannian metric

is associated with the cannonical connection on a manifoldM. This canonical connec-

tion is also called the Levi-Civita connection, and, Equation 2.4, is also known as the

Rao’s Riemannian distance. Note, another interesting connection is the α−connection,

developed by Amari [11], and is out of scope for this thesis.

In Appendix A.2, we discuss various versions of the geodesic distance and some of

its properties. Additionally, in Appendix B.1.1 we provide the numerical schemes for

computing the Riemannian logarithmic and exponential maps. For further exposition

of the distance function, we refer the reader to [68, 77, 90, 91].
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2.3 Estimating Intrinsic Statistics

In this section, we define the generalized normal distribution on the statistical manifold

for the MVN family of probability distributions, {p(·|Σ)}, and, then, describe schemes

for estimating its parameters.13 Note, as mentioned in Section 2.1, we are interested

in an estimator that is invariant under a coordinate transformation. Hence, the tools

provided in this section are sometimes categorized in the statistical-manifold literature

as the intrinsic statistics.

2.3.1 Generalized Normal Distribution

The generalized normal distribution, N (Σ̄,Λ), on the statistical manifold, S+(m,R), for

a mean, Σ̄, and variance-covariance matrix, Λ, of small variance, s2 = tr(Λ), is derived

in [9, 68, 77, 91]. The closed form solution of the generalized normal distribution is

given by the probability density, fG(·), of the form:

fG(Σ; Σ̄,ΛR) = kG. exp
−βTΛR

−1β

2
, (2.5)

where the concentration matrix14 on the Riemannian manifold is given as Λ−1
R = Λ−1−

Ricci
3 +O(s) + ε( s

rinj
); the normalizing factor is given as kG =

1+O(s3)+ε( s
rinj

)√
(2π)m(m+1)/2|Λ|

; and β is

the tangent vector from Σ̄ to Σ.

The curvature tensor, Ricci, is computed at Σ̄, and, intuitively, provides a measure

of the difference between the geometry of the Riemannian metric and the Euclidean

metric. The injectivity radius, rinj, at Σ̄ defines the largest ball around the origin for

which the geodesic distance is a locally linearizing function. Finally, the terms O(s) and

ε are the result of taking the Taylor expansion of the Riemannian measure around the

origin such that lim0+ x
−ωε(x) = 0 ∀ω ∈ R+. The computation of the Ricci curvature

13The family of the MVN distribution with a common (or zero) mean, and a variable covariance
matrix, Σ, on a statistical manifold, S+(m,R), can also be defined as a matrix manifold. Given that
the point, p ∈ S+(m,R), is a symmetric positive definite matrix, SPD(m,R), and in the quotient space
of GL(m)/O(m).

14The inverse of the covariance matrix is also called the concentration matrix, or precision matrix.
The first term in ΛR

−1 is the inverse of the variance-covariance matrix, Λ−1, and the remaining terms,
−Ricci

3
+O(s) + ε( s

rinj
), are the consequence of considering the Riemannian geometry.
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tensor for the MVN family is further described in Appendix A.1.

From the derivations in Appendix A.1, it is observed that the Ricci curvature tensor

is computationally the most expensive term in Equation 2.5. Hence, an alternative,

more straightforward, analytical solution of the above generalized normal distribution

can be formulated by assuming that the manifold is locally flat or Euclidean, and

geodesically complete. As a consequence, the order of the Ricci curvature is negligible

in comparison to the order of variance, O(s), and one can neglect the terms Ricci
3 and

rinj in the computation of the generalized normal distribution. The probability density,

fSG, for this simplified general normal distribution is then computed as follows:

fSG(Σ; Σ̄,Λ) = kSG. exp

(
−1

2
LogΣ̄(Σ)TΛ−1LogΣ̄(Σ)

)
, (2.6)

where the normalizing factor is given as kSG = 1√
(2π)m(m+1)/2|Λ|

, and |Λ| is the determi-

nant of the variance-covariance matrix, Λ.

Further computational simplification of the general normal distribution can be ob-

tained by using the scalar variance, σ2, instead of the variance-covariance matrix, Λ.

The scalar-variance general normal distribution, N (Σ̄, σ2), with σ > 0 is then given as

the probability density, fscG, as follows:

fscG(Σ; Σ̄, σ) = kscG. exp
(−D2(Σ, Σ̄)

2σ2

)
, (2.7)

where D is the Rao’s Riemannian distance as given in the previous section, i.e., Equa-

tion 2.4, and kscG is the normalizing factor. For m = 2, the normalizing factor is given

as follows:

kscG(σ)|(m=2) =
1

(2π)3/2σ2 × eσ2/4 × erf(σ/2)
, (2.8)

where erf is the error function. For m > 2, the normalizing factor can be computed

using a Monte-Carlo simulation for the specific scalar variance, σ ∈ R+, and, thereby,

the pre-computed look-up table can be applied to a particular dataset. Details of the

normalizing factor in Equation 2.7 can be found in [92].

The various forms of the generalized normal distribution on a statistical manifold,
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as given in Equations 2.5, 2.6, and 2.7, will be used for our geostatisitcal problems of

estimation and simulation in Chapters 4, 5, and 6.

2.3.2 Mean and Variance

In this subsection, we describe the estimates of the essential parameters of the gener-

alized normal distribution on a statistical manifold, i.e., the Riemannian mean, Σ̄, and

variance, Λ. Figure 2.1 depicts the empirical Riemannian mean, Σ̂, and the tangent

vector, βk, that are used to compute the empirical Riemannian variance, Λ̂.

Let the empirical Riemannian mean or barycenter, parameterized by Σ̂ ∈ S+(m,R),

is estimated from the set of n distributions, {p(·|Σk) : k = 1, . . . , n}, and represented as

the normal distributions, p(·|Σ̂), with a zero mean vector. Then, Fréchet in [88] defines

p(·|Σ̂) as a unique minimizer, sF ∈ R+, of the Fréchet variance, µ2
F : S+(m,R) → R+,

and is given as:

µ2
F (Σ1, . . . ,Σn) =

1

n

n∑
k=1

D2(Σk, Σ̂) = E[D2(Σk, Σ̂)],

sF = argmin (Σ̂ ∈ S+) µ
2
F (Σ1, . . . ,Σn). (2.9)

When µ2
F (Σ1, . . . ,Σn) achieves a local minimum, Σ̂ → Σ̄, it is called the Karcher

mean [93]. Karcher showed that for a non-positive sectional curvature, i.e., S+ manifold,

the above mean exists and is unique.

The exponential map and logarithmic map are used in the minimization routine of

the gradient descent scheme for numerically finding the empirical Riemannian mean,

as outlined in Algorithm 7 in Appendix B.1.2. The numerical scheme for computing

the logarithmic map, LogΣ̂(Σk), is sketched in Algorithm 6. Furthermore, the Rie-

mannian exponential map, ExpΣk
(X), is inverse of the Riemannian log map, where

Σk ∈ S+(m,R) is the initial point on the geodesic flow, γ(t = 0), and X ∈ SO(m)

is the diagonal tangent vector such that ExpΣk
(X) traverses along the geodesic flow

to γ(t = 1). Hence, using the similar diagonalization scheme as Algorithm 6, one can

compute the exponential map, ExpΣ̂(Σk).
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To find the empirical Riemannian variance or Fréchet variance, Λ̂, one can associate

to each of the n normal distributions, p(·|Σk), a unique tangent vector, βk ∈ S(m,R),

at the tangent space, TΣ̄M, such that Σ̂ is mapped on Σk by the exponential map,

ExpΣ̂(Σk) = Σ̂1/2 exp
(

Σ̂−1/2βkΣ̂
−1/2

)
Σ̂1/2. The tangent vector, βk, is then of the

form:

βk = −∇D2(Σk, Σ̂)

= −Σ̂ log
(

Σ−1
k Σ̂

)
, (2.10)

and the variance-covariance matrix is given as:

Λ̂Σ̂ =
1

n− 1

n∑
k=1

βkβ
T
k . (2.11)

For the scalar version of the empirical Riemannian variance, σ̂, we can take the max-

imum likelihood estimates (MLE) of log fscG(Σ; Σ̄, σ), i.e., Equation 2.7, with respect

to the parameters Σ̄ and σ. The MLE solution for Σ̂ converges to the empirical Rie-

mannian barycenter of Equation 2.9. Moreover, the MLE for σ̂ results in the following

formulation:

σ3 × d

dσ
log(kscG)−1 = E[D2(Σk, Σ̄)]. (2.12)

The above equation can be solved for σ̂Σ̂ using a standard non-linear optimization

algorithm, such as Newton’s algorithm. Further details of the derivations related to

Equation 2.12 can be found in [9, 92].

A crucial practical advantage of using the Riemannian metric, i.e., an affine-invariant

metric, and its associated empirical Riemannian mean, is its reduction in the “swelling

effects”. The “swelling effects” distorts the computation of the high-dimensional ten-

sors, which in our settings is SPD(m ≥ 2). Specifically, the swelling effect is an increase

in the determinant of a tensor when computed by averaging or interpolating a set of

tensors. The determinant or trace of the tensor is the measure of dispersion in the local

diffusion process. Hence, it is essential to select a metric that preserves the determinant

of the tensor. In the case of the Euclidean metric, and its associated mean, the swelling
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effect is prevalent. For further discussion on the swelling effects, we refer to [10, 94].

In this chapter, we discussed relevant concepts from the statistical Riemannian

manifold literature. These concepts are further applied to improve various geostatistical

models.
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Chapter 3

Relevant Concepts from Geostatistics

3.1 Introduction

The classical geostatistical methodologies that originated in the 1950’s from the Fontain-

ebleau school of thought aimed at predicting the yield of the mining operation over a

spatially bounded region [13, 14]. However, modern geostatistics has very much inte-

grated with the field of spatial statistics. The three main areas of spatial statistics, that

is pointed out in [5], includes continuous spatial variations, discrete spatial variation,

and spatial point processes. Furthermore, with the current advent of satellite datasets,

spatial statisticians have been interested in inference problems in large datasets. Some

of the leading inference methodologies for large geospatial datasets include low-rank

kriging [95], fixed-rank kriging [96], hierarchical models [6], and, most recently, nearest-

neighbor Gaussian process [97].

This thesis mainly concerns with modeling of covariance structures, i.e., the second-

order properties of the stochastic process, for the application of continuous spatial

variations. For those readers with historic inclinations, extensive development in geo-

statistics is provided in [1, 5]. Additionally, the exposition of the asymptotic theory in

geostatistics can be found in [3].

The classical geostatistical method of Matérn, named Kriging,1 models a continuous

stochastic process, i.e., {Z(·)}, as:

Y (s) ≡ Z(s) + η(s), s ∈ G (3.1)

1The geostatitical method of Kriging was named in honor of a mining engineer, D. G. Krige. Specif-
ically, it is called ordinary kriging as the sample mean is estimated using a generalized least squares
model. Later extensions, that is universal kriging, used a regression model for the mean estimates.
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where {Y (s)} is the observation process, {η(s)} is the white noise process (or mea-

surement error), and {Z(s)} is the spatial process which we are interested in modeling.

For environmental applications, the spatial processes are classically modeled by their

first and second-order moments. The first-order moment being the mean function, i.e.,

µ(s) = E[Z(s)] = E[Z(s + h)], and the second-order moment being the covariance

function, i.e., k(s, s′) = Cov(Z(s), Z(s + h)) = Cov(Z(0), Z(h)) = C(h). Here, h

is the inter-point distance vector. This model is also known as a stationary process.

Furthermore, when C(h) = C(‖h‖) the process is stationary and isotropic, and is also

known as homogeneous. Further discussion on the stationary and isotropic processes

will be revisited in Sections 3.2.2 and 3.2.3, respectively.

A case of Kriging, specifically, simple kriging, that models a finite-dimensional dis-

tribution as a second-order property is called a Gaussian process (GP). GPs are a well

known non-parametric regression technique in the geostatistics and machine learning

communities and have shown promising results for various real-world applications [98].

The GP models are commonly assumed zero-meaned without loss of generality.

The primary objective of geostatistical modeling, and, in-turn, modeling of the

covariance function, is to explain the underlying stochastic process. Foremost step for

an explanation, then usually leads to estimating the parameters of the model using

the existing record of climate variable, and, next, make inference about the nature of

the underlying process of a climate variable, i.e., to find F =
∫
G Z(s)ds. Here, G is

the spatial domain of the process. The inference stage could also include predictions

of the unobserved variables within the spatial domain or could sample a realization of

the underlying process for the entire spatial domain. For example, as we show in our

methodological development of modeling the covariance function, first we estimate the

parameters of the covariance function, k(s, s′). Then, we make inferences about the

climate variables at the unobserved geolocations and regions. The covariance function,

intuitively, describes the local, or small-scale, dependence structure of a random variable

at various geolocations.

In Chapter 1, we provided an overview of the geostatistical problems describing

the focus of this thesis. In this chapter, we delve further into the fundamentals of the
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relevant concepts of the geostatistical models for estimation and simulation. Specif-

ically, we describe concepts of the Gaussian process, spatially-varying non-stationary

covariance function, geometrical anisotropy, and multivariate normal sampling.

Note, in this chapter, wherever relevant, we point out differences in the usage of

terminology between the geostatistics literature and other fields, such as the machine

learning literature. One such possible ambiguous terminology is intrinsic. Intrinsic,

as referred to the statistical manifold, i.e., in Chapter 2, is a class of estimators that

is invariant under coordinate transformations. On the other hand, intrinsic random

function (IRF) is a class of generalized stochastic processes that are characterized using

generalized increments such that its variance is translationally invariant [99, 100].2

IRF is one of the earliest models in the geostatistics literature for considering non-

stationarity of the stochastic process.

3.2 Geostatistical Estimation

In Chapters 4 and 5, we propose an approach for explaining the spatial process of a

climate variable, i.e., sea-level change. In this section, we provide the basics that are

relevant for the explanation of a spatial process.

3.2.1 Gaussian Process

A stochastic process, {Z(s) : s ⊂ Rdim}, is a Gaussian process (GP), such that its finite-

dimensional distribution follows a multivariate Gaussian for every set of geolocations,

s = {s1, . . . , sn}, and their associated joint distributions, Z(s) = {Z(s1), · · · , Z(sn)},

i.e., Z(s) ∼ GP(µZ ,ΣZ). The standard univariate GP prior model for regression can

be expressed as:

Yi ∼ N (Z(si), ηi) and Z(·) ∼ GP(µZ(·), kZ(·, ·, θY )), (3.2)

2IRF in classical geostatistics has been used to model the second-order stationarity of the stochastic
process. An intuitive idea behind an IRF model is that instead of directly modeling the data, one
models a certain linear combination of the data such that the drift is filtered out.
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where µZ(·) is the mean function, kZ(·, ·, θZ) is the covariance function, and θZ are a

set of parameters for the covariance function that is associated with the distribution

of Z(·). Furthermore, ηi represents the measurement error, and, in classical geostatis-

tics, the error process is also known as the nugget effect. The standard priors for the

measurement error model can be represented as independent, identical, and normally

distributed, i.e., η(·) ∼ N (0, σ2
Z), where, σ2

Z > 0 is the unknown noise variance (or

nugget variance) and η(·) is independent of Z(·). Then, the noise covariance matrix is

computed as: KY = σ2
Y In, where In is the n-dimensional identity matrix.

Notes on the notations: Y (·) denotes functional representation of a process; Y =

(Y (s1), · · · , Y (sn))T represents the vector of observed (or training set) random vari-

ables; and, Y ∗ = (Y (s1), · · · , Y (sn∗))
T represents the vector of unobserved (or test set)

variables. Similarly, Z and Z∗ represents realization of the process over the training

and test set, respectively.

From the above GP definition, noisy observed (or training) values, Y , and unob-

served (or test) values, Y ∗, can be written in the joint distribution as:

 Y
Y ∗

 ∼ N(
µZ
µZ∗

 ,
(KZ +KY ) KT

Z∗

KZ∗ (KZ∗∗ +KY ∗∗)

), (3.3)

where the covariance matrix KZ∗ is computed by applying the covariance function,

kZ(·, ·, θZ), between all of the pairs of collections in the observed, s, and unobserved

geolocations, s∗. Similarly, KZ∗∗ denotes the computation between s∗ and s∗.

Gaussian process (GP) regression model have been a useful tool for prediction both

in the machine learning community and the spatial statistics community. For the GP

model, the predictive distribution is a Gaussian. Furthermore, best linear unbiased

prediction (BLUP) for GP is its conditional distribution.3 Deriving the conditional

posterior distribution for Y ∗ from Equation 3.3, we get a normal with the following

3The BLUP, in geostatistics, is generally called Kriging and is derived by minimizing the mean
square error (MSE). Furthermore, BLUP in the sense of the best MSE for a GP model coincides with
its conditional expectation.
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predictive distribution:

Y ∗|Y ∼ N (µZ∗+KT
Z∗(KZ +KY )−1(Y −µZ), (KZ∗∗+KY ∗∗)−KT

Z∗(KZ +KY )−1KZ∗).

(3.4)

Given the parameter values, θZ , and the noise variance, σ2
Y , the predictive mean and

the variance is given as:

E(Y ∗|Y ,µZ , θZ , σY ) = µZ∗ +KT
Z∗(KZ +KY )−1(Y − µZ)

Cov(Y ∗|Y ,µZ , θZ , σY ) = (KZ∗∗ +KY ∗∗)−KT
Z∗(KZ +KY )−1KZ∗ .

(3.5)

A typical next step for the methodological development, after settling with the model

or hypothesis, is parameter estimation, i.e., finding θ = {σY , θZ} from the observed or

training datasets. A standard parameter estimation, usually involves some variants of

the maximum likelihood-based estimation (MLE) method, i.e., θMLE = arg maxθ p(Y |θ).

For the Bayesian GP models, the above MLE formulation takes the form of maximizing

the posteriors (MAP), i.e., θMAP = arg maxθ p(Y |θ)p(θ).4 MLE-based methods are

desirable for certain classes of models because of their asymptotic properties, such as,

consistency and efficiency.

In practice, we have finite samples and complex models that could lead MLE based

estimates to over-fitting and analytically-intractable solutions, respectively. Hence, an

alternative procedure to use approximate inference methods, such as Markov Chain

Monte Carlo (MCMC).

Even though GP is a versatile class of non-parametric model, the key drawback is

their computational, O(n3), and storage, O(n2), complexity. Here, O is the Big Oh

complexity notation, and n is the number of training data points. In recent years,

there have been a number of alternative methodologies to circumvent the computation

complexity. For example, [97] explores the nearest-neighbor attribute of the spatial

process, while [101] exploits the sparsity characteristic of the covariance matrix.

4The MLE formulation is equivalent to that of the MAP when the priors on the parameters, p(θ),
are chosen to be uniform.
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GPs have been vastly explored in the Bayesian machine learning [98] and spatial

statistics [6, 102] literature. The theoretical aspects in terms of fixed-domain asymp-

totics are provided in [3]. Furthermore, GPs have also been related to other more

general non-parametric models, such as Support Vector Machines [103] and smoothing

spline models [104]. In this thesis, we do not provide an exhaustive background on the

GPs, and, rather, primarily present the GP model for the application of inference using

our covariance model.

3.2.2 Spatially-varying Non-stationary Covariance Function

In this section, we discuss relevant basic concepts of a covariance function and then

elaborate a specific kind, i.e., spatially-varying non-stationary covariance function. In

Chapter 4, other non-stationary models that are relevant to climate applications are

further discussed, and a method is proposed to improve the modeling of a spatially-

varying non-stationary covariance function.

Covariance Function

A covariance function, k(·, ·), on Rdim ⊗ Rdim, of a stochastic process for a pair of

geolocations, {s, s′}, is given as: k(s, s′) = Cov{Z(s), Z(s′)} = E((Z(s) − µ(s))

(Z(s′) − µ(s′))).5,6 Moreover, given a set of inputs, {s1 . . . , sn|si ∈ Rdim}, the en-

tries of the covariance matrix, K, can be computed from from the covariance func-

tion, k(·, ·), such that Kij = k(si, sj). The essential condition on the covariance

function, as given in [3], is that k(s, s′) < ∞, and for all finite collection of n and

a = {(a1, . . . , an)T |ai ∈ R}, it assigns nonnegative values to all quadratic forms, i.e.,

n∑
i=1

n∑
j=1

ai aj k(si, sj) = a′Ka ≥ 0, ∀ai ∈ R. (3.6)

5A mapping between two inputs x,x′ ∈ I into R is generally called a kernel function. Here, I is
any arbitrary input space. A symmetric, positive-definite kernel, or the Mercer’s kernel, for a pair of
inputs is equivalent to the covariance function under certain constraints. Hence, in the machine learning
community, the usage of the term covariance function is commonly abused with that of kernel function.

6For simplicity, we suppress the inclusion of the probability space notation for a random variable
of a stochastic process. That is, instead of Z(s, ω), where ω ∈ Ω is the sample space, we denote the
random variable as Z(s).
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The above condition on the covariance function further ensures positive definite-

ness of the correlation function, ρ(s, s′) := Corr{Z(s), Z(s′)}, as is evident from the

following formulation: ρ(s, s′) = k(s,s′)
σ(s)σ(s′) . Here, σ(·), is the positive function, i.e.,

σ2(s) = k(s, s), and σ2(s) > 0. Furthermore, the covariance computed between the

collection of the random variables is a symmetric, i.e., k(s, s′) = k(s′, s).

Intuitively, the covariance function describes how the two random variables change

together. Accordingly, the stationary correlation function describes the relationship

between two random variables based on their inter-point distance, h. Hence, typically

at the origin the stationary correlation function is given as: ρ(h = 0) = 1, and it

monotonically decays at a distance further away, i.e., ρ(h → ∞) → 0. Furthermore,

when the correlation approaches zero after some finite value of distance, i.e., ρ(h ≥ r) =

0, then the distance value, r ∈ R+, is called the range parameter. Next, we describe a

useful form of stationary covariance function which we use in our model development.

Stationary Covariance Function

For modeling real data, the covariance that incorporates two important characteristics

of the datasets, i.e., the closeness measure, ρ(·), and measurement noise model, η(·),

can be written as:

k(si, sj) = σ2
Z ρ(q(si, sj)) + σ2

Y I, (3.7)

where σ2
Z > 0 is the signal variance, σ2

Y > 0 is the noise variance, and I is the indicator

function. In the above formulation, we have assumed a constant variance leading to

σ2 = σ(s)σ(s′). In geostatistics, the noise variance, σ2
Y , is also known as the nugget

variance, and the variances, σ2
Z + σ2

Y , is also known as the sill variance.

The key component in the correlation function that measures closeness is the scaled

squared separation length (henceforth, called the dissimilarity function), qij , q(si, sj),

and is given as:

q(si, sj) = (si − sj)TΣ−1
Z (si − sj), (3.8)
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where ΣZ is a positive definite matrix, and, henceforth, is called the scale parameter.7

When the process is assumed to have a constant scale in every direction of the

input space axes, the above formulation can be written as: qij =
d2(si,sj)

l2
. Such a

process is also called geometrical isotropic. Here, l ∈ R+ is the scalar scale parameter,

and de(·, ·) is the distance function between a pair of geolocations.8,9 On the other

hand, when the process is allowed to have directional effects with respect to the scale

parameter, i.e., geometrical anisotropy, the scale parameter is a matrix, i.e., ΣZ ∈

Rdim×dim. Furthermore, when the feature, or covariate space, of s is considered, i.e.,

s→ x(s), the scale matrix dimensions are given as: ΣZ ∈ Rm×m.

For spatial statistics, including geostatistical models, an important class of covari-

ance function is the Matérn function due to their flexibility in capturing the varying

smoothness of the underlying distribution. The Matérn form of the stationary correla-

tion function, Mν , can be constructed as follows:

ρ(ν, qij) =
1

Γ(ν)2ν−1
(
√

2νqij)
ν
Kν(

√
2νqij), (3.9)

where ν is the smoothness parameter that controls the differentiability of the function,

Kν is the modified Bessel function of the second kind, and Γ(ν) is the gamma function.

Note, when ν →∞ the Matérn function approaches the squared exponential correlation

function, i.e., ρ(qij) = exp
(
−qij

2

)
.10 Similarly, when ν = 0.5 the Matérn function

approaches the exponential function, i.e., ρ(qij) = exp
(
−√qij

)
.

In classical geostatistics, the second-order dependence in a stochastic process has

also been modeled using the Variogram model. The theoretical variogram, V (·, ·), is

7Interestingly, the above form of the range function, q(s, s′), is equivalent to that of the Mahalanobis
distance, or the generalized squared inter-point distance between the observation vectors, i.e., d2(s, s′) =
(s− s′)TΣ−1(s− s′). Here, d(·, ·) is the dissimilarity measure, and Σ is the positive definite covariance
matrix.

8In geostatistical models, the role of the scale parameter, l or ΣZ , is similar to that of the range
parameter, r. Additionally, for the exponential correlation function the scalar scale parameter, l, can
be trivially seen as equivalent to the range parameter, r.

9In the machine learning community, the scalar scale parameter, l, is also called the characteristic
length scale.

10In the machine learning community, a squared exponential correlation function is also popularly
called as the radial basis function.
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given as:

V (s, s′) =
1

2
V ar(Z(s)− Z(s′)). (3.10)

For practical purposes, the empirical variogram, VY (h) = 1
2E[(Y (s) − Y (s+ h))2], is

commonly used. However, for inference, several authors, including [1, 3], suggested

avoiding the empirical variogram model, and, instead, using the Matérn model. Al-

beit, due to the simplicity of the empirical variogram model, it is regularly used for

exploratory purposes.

When the covariance is only a function of the vector difference between the geolo-

cations, i.e., k(s, s′) = k(s−s′), and the mean of the process is constant, µ(s) = µ, the

process is called weakly stationary.11 On the other hand, any stochastic process that

does not follow the above two conditions is called a non-stationary process. In spatial

statistics, non-stationarity is commonly introduced by varying the mean structure, or

covariance structure, or by using the intrinsic random function (IRF).

Non-stationary Covariance Function

Non-stationarity could simply be introduced by varying the mean based on its location,

i.e., µ(s). Such mean functions are called spatial trends, and can be easily modeled

using either the polynomial regression or spatially referenced covariates [1]. Alterna-

tively, IRF models non-stationarity in the process by using stationary increments. A

straightforward example is that of a random walk model. IRF models are not widely

used in environmental applications, especially for spatial predictions, as they fail to

capture the global behavior of the process.

In environmental applications, a crucial non-stationarity is that of the covariance

structure [5]. The general philosophy underlying most of the modeling approaches

for the non-stationary covariance structure is that locally the correlation structure is

approximately stationary and anisotropic. Such covariance structures are characterized

11A weakly stationary process implies shift invariance of its first and second-order moments. In
comparison, a strictly stationary process implies shift invariance of the finite-dimensional distribution.
In general, a strict stationarity implies a weakly stationary process, but the converse is not true.
However, for the stationary Gaussian stochastic process the converse is also true.
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Figure 3.1: Example of geometrical anisotropy (i.e., ellipses) along Northeast America’s
tide-gauge sites. The shape of the ellipses are (a) constant for the stationary covariance
structure and (b) a function of geolocations for the spatially-varying non-stationary
covariance structure.

as locally-stationary, anisotropic, and spatially-varying.

For an illustration of the spatially-varying non-stationary covariance structure see

Figure 3.1b. Here, the shape of the ellipses at various tide-gauge locations around

Northeast America is varying. Note, the ellipses are representing the spatial anisotropy

locally, i.e., ΣZ in Equation 3.8. In comparison, the anisotropic stationary covariance

structure is illustrated in Figure 3.1a, where the ellipses are constant over the spatial

region.

In the literature of spatial statistics, predominantly the non-stationary models for

the covariance structure can be categorized into smoothing kernel methods, basis func-

tion models, deformation models, and process convolution models. For the basics on

the aforementioned models see [5]. Further discussion of the literature of non-stationary

models is revisited in Section 4.1. In this section, we provide the background for the

process convolution models as we propose to improve these class of models in Sec-

tion 4.3.1.

The process convolution approach, as introduced by [7], models the process, Z(s),

by convolving the kernel function, ks(·), centered at the locations s with the white

noise process, w(·), i.e., Z(s) =
∫
G ks(u)w(u)du. Here, the locations are s,u ∈ G ⊂

Rdim. By allowing the kernels to vary spatially, the resulting non-stationary covariance



40

function is then given as:

k(s, s′) =

∫
G
ks(u)ks′(u)du. (3.11)

For the closed-form solution of the above convolution model, [7] used Guassian kernels

that vary smoothly in the input space. Further improvement by [8] modeled the kernels

as spatially-varying parameters of the Matérn covariance function.

The closed-form solution of the spatially-varying non-stationary Matérn correlation

function, ρNS(·, ·), as given by [8], is:

ρNS(si, sj) = 2
dim

2 |Σi|
1
4 |Σj |

1
4 |Σi+Σj

2 |−
1
2 ρS(ν, qNSij ), (3.12)

where Σi , Σ(si) is the spatially-varying geometrical anisotropy, and ρS(·, ·) is the

stationary Matérn correlation function as given in Equation 3.9. The dissimilarity

function, qNSij , is given as:

qNSij = (si − sj)T
(Σi + Σj

2

)−1
(si − sj), (3.13)

where the scale matrix, Σ(s), is positive definite, i.e., Σ(s) : Rdim → SPD(dim,R), and,

in practice, preferred to be smoothly varying. Furthermore, by the property of SPD

matrices, the convolved scale matrix, or the geometrical anisotropy, Σij , Σ(si, sj) =

Σi+Σj
2 , is also positive definite. Note, the correlation function, ρNS(·, ·), leads to a

valid non-stationary covariance function, and the proof can be found in [8]. Intuitively,

Equation 3.12 indicates that the non-stationary correlation structure between s and s′

is captured by the convolution (or the arithmetic average) of the local kernel structure

(or the geometrical anisotropy).

Moreover, extension of Equation 3.12 is provided by [18], where in addition to the

spatially-varying geometrical anisotropy, Σ(s), the smoothness parameter of the Matérn

correlation function is also spatially-varying, ν(s).12 The non-stationary covariance

12The formulation of Equation 3.14 is no longer a process convolution model, but, it is still a valid
non-stationary covariance function.
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function, kNS(·, ·), as given in [18], can be constructed from the following form:

kNS(si, sj) = c(si)c(sj)|Σij |−
1
2 ρS

(
(
ν(si)+ν(sj)

2 ), qNSij

)
, (3.14)

where c(si) and c(sj) are functions on Rdim, such that c(si) = f(si, |Σi|1/4) and c(sj) =

f(sj , |Σj |1/4). This equation reduces to Equation 3.12 when a constant smoothness and

signal variance is assumed, i.e., ν(s) = ν and c(s) = σ|Σ(s)|1/4.

Process on the Sphere

For environmental applications, the curvature of the Earth should be considered while

modeling processes that are located far apart in the input space [105]. Such processes are

assumed to lie on a sphere, S2 ⊂ R3. For processes on a sphere, the inter-point distance

between geolocations are computed using the great circle distance, or, commonly, the

angular distance, dgcd.
13 See Appendix A.3 for the computational details of the distance

function on a sphere.

For the stationary isotropic correlation, the dissimilarity function considering the

great circle distance, i.e., Equation 3.8, can be written as: qtij =
d2
gcd(si,sj)

l2
. Further-

more, for the case of a geometrical anisotropy correlation function, the input space of

geolocations can be transformed, s → st, such that, st = Ls and, LLT = Σ−1. Then,

the transformed dissimilarity function can be written as:14

qtij = d2
gcd(s

t
i, s

t
j). (3.15)

For the case of a spatially-varying non-stationary geometrical anisotropy correlation

function, the dissimilarity function in Equation 3.13 is a function of the convolved scale

matrix, Σij , and depends on both of the input space locations, si and sj . Hence, the

13Great circle distance can be given as: dgcd = rad ∆ central angle, where the radius, rad, of the
earth is assumed constant. Hence, the great circle distance between geolocations, in terms of latitude
and longitude, is typically computed with the angular distance, i.e., ∆ central angle, in the unit of
radians.

14In [19], a deformation model, similar to the transformed stationary anisotropic correlation function,
is devised for the non-stationary anisotropic covariance function.
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transformation scheme of Equation 3.15 cannot be directly applied for qNSij as it renders

to a semi-metric dissimilarity function and, potentially, a discontinuous scale matrix

process on a sphere.15 In that case, [8] suggests using the Lambert azimuthal equidistant

Euclidean projection of the geolocations on a sphere for modeling a smooth scale matrix

process. The scale matrices are then projected back to the sphere for modeling the

convolved correlation function. As pointed out in [8], such procedures do not have

an analytical form, and the numerical integration is not straightforward. Hence, in

practice, an Euclidean distance approximation of the spherical distance suffices for

regional datasets, such as the North American tide gauge sites.

Smoothness Properties

Moreover, the choice of the covariance function for the Gaussian process and its local

behavior affects the critical smoothness properties of the underlying physical or stochas-

tic process. Specifically, the two critical properties of a process are its mean square and

sample path continuity and differentiability. The basic theory of the smoothness prop-

erties of a process can be found in [106]. For a standard zero-mean Gaussian process,

the various covariance functions given above are mean square and sample path con-

tinuous. For the stationary Matérn correlation function of Equation 3.9, the process

is 2M -th and M -th order mean square and sample path differentiable, respectively, if

the smoothness parameter is ν > 2M .16 Further discussion of the properties of the

stationary Matérn correlation function can be found in [3].

For the spatially-varying non-stationary correlation function of Equation 3.12, the

mean square and sample path is guaranteed M -th order differentiable if the smoothness

parameter is ν > 2M and the anisotropic scale matrix process, Σ(s), has (M + 1)-th

order differentiability. Hence, in practice a smoothly varying geometrical anisotropy is

preferred for the spatially-varying non-stationary correlation function. Intuitively, the

non-stationary covariance function modeled through a smooth anisotropic process is

15A semi-metric violates the triangle inequality condition of the distance function

16The covariance function form of Equation 3.7 is assumed to have constant variances, σ2
Y = σ2

Y (s)
and σ2

Z = σ2
Z(s); hence, they do not affect the smoothness properties of the process.
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locally stationary; hence, one can see the similarity between the smoothness properties

of the above given stationary and non-stationary correlation functions. The proofs of the

aforementioned smoothness properties are given in [8]. In the next section, we provide

methods from the literature for modeling a smoothly-varying geometrical anisotropy,

or the scale matrix.

3.2.3 Geometrical Anisotropy

Anisotropy mean that the properties of a process are directional dependent. An im-

portant anisotropy that can be introduced through the covariance structure is the geo-

metrical anisotropy.17 Geometrical anisotropy, intuitively, explains the differential rate

of correlation decay between the geolocations relative to their orientation [1]. For the

stationary case, as mentioned in Equation 3.8, geometrical anisotropy through the scale

matrix, in dim = 2, can be decomposed as:

ΣZ = ΓDΓT =

cos(ψA) − sin(ψA)

sin(ψA) cos(ψA)

λ1 0

0 λ2

 cos(ψA) sin(ψA)

− sin(ψA) cos(ψA)

 . (3.16)

Here, Γ is the eigenvector matrix, or the rotation matrix, that can be expressed us-

ing the anisotropy angle, ψA, and D is the diagonal matrix with positive eigenval-

ues, {λ1, λ2 | λi ∈ R+}, that can also be expressed in terms of the anisotropy ratio,

ψR = λ1
λ2
≥ 1. Note, this decomposition of a two-dimensional SPD matrix, ΣZ , can be

represented as an ellipse, as depicted in Figure 3.1.

For the case of a non-stationary covariance structure, the geometrical anisotropy is

modeled such that it varies for every pair of geolocation, Σij . For example, the geolo-

cations that are associated with a large anisotropy ratio has a slow rate of correlation

decay along the direction of the anisotropy angle.

The geometrical anisotropic process, introduced by [7] as the kernel convolution

process, uses Gaussian kernels for each geolocation, si ∈ R(dim=2) to model the scale

17Similar to the geometrical anisotropy in the correlation function, anisotropy can also be introduced
in the sill and nugget variances. In this thesis, we focus on the most important anisotropic parameter,
i.e., geometrical anisotropy. For discussion on other anisotrppic properties of a process, such as, zonal
and nugget anisotropy, see [1, 102].



44

matrix.18 They model the smoothly-varying Gaussian kernels using the parameteriza-

tion of an ellipse with a constant area. Such parameterizations are not straightforward

to be scalable for high-dimensional spaces. Furthermore, a constant area of the ellipse

and Gaussian kernels can cause over-fitting and over-smoothing of the sample paths,

respectively.

An extension provided by [8] models geometrical anisotropy as the average of the

scale matrices that are associated with the pair of geolocations, i.e., Σij =
Σ(si)+Σ(sj)

2 , as

given in Equation 3.13. They evaluate the scale matrix for each of the geolocations using

eigendecomposition, and, in-turn, model each of the parameters of the decomposed

matrix using a stationary anisotropic process. The eigendecomposition form for the

two dimensional input space in [8] is as follows:

Γ(s) =

 u
luv

−v
luv

v
luv

u
luv

 , D(s) =

log(λ1) 0

0 log(λ2)

 , luv =
√
u2 + v2, (3.17)

where the parameters of the scale matrix, θΣZ , {θiΣZ}s = {u(s), v(s), λ1(s), λ2(s)},

are modeled using an independent stationary anisotropic Gaussian Process. In other

words, each parameter, θiΣZ , of the above eigendecomposition is modeled as:

θiΣZ (·) ∼ GP(µiΣZ , k
i
ΣZ

(·, ·, θθiΣZ )), (3.18)

where θθiΣZ
, {θθiΣZ } = {σ2

θiΣZ
, ΣθiΣZ

} are the hyperparameters, or free parameters, for

the covariance, kiΣZ , of the GP model that is associated to the scale matrix parameter

of θiΣZ . To ensure a consistent sample path differentiability along the model hierarchy,

a stationary squared exponential correlation function, i.e., infinitely differentiable, is

used by [8] for kiΣZ (·). Furthermore, depending on the application, for modeling the

hyperparameters, θθiΣZ
, a uniform prior or conjugate priors should suffice. Note, for the

notations in the above parameters, the superscript denotes an element of the parameter

18In the literature of geostatistics, e.g., in [7, 8, 107], the terminology of kernel matrix is used for the
spatially-varying geometrical anisotropy. Instead of using the term kernel matrix, we use scale matrix,
so as not to be confused with the widely, and sometimes loosely used term of kernel in the machine
learning community.
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space at each layer of the model hierarchy, and the subscript denotes the associated

process of a parameter that is a level above.

The above model of the geometrical anisotropy, as given by [8], has three layers of

parameters in the model hierarchy. The first layer closest to the data is the parameters

of variances and smoothness, i.e., θlevel=1 = {σ2
Y , σ

2
Z , ν}; the second layer is the scale

matrix process, i.e., θlevel=2 = {θiΣZ}s∈Rdim , where i = 1, . . . ,
(

dim+ dim(dim−1)
2 +(dim−

1)
)

; and, finally, the last layer of the hyperparameters are θlevel=3 = {θθiΣZ , µ
i
ΣZ
}.

Hence, the number of parameters to be estimated, |θest|, discounting the parameters of

the priors for θlevel=1 and θlevel=3, can be written as follows:

|θest| =
(

3
)

+
(

2 · dim− 1 +
dim(dim− 1)

2

)
·
(

dim +
dim(dim− 1)

2
+ 1
)
. (3.19)

Note, the above cardinality only refers to the parameters that need to be estimated.

More specifically, the total number of the parameters in the model also includes the

number of scale matrix, n, computed at each of the observations. Hence, the dimension

for the parameter space, discounting the priors, is |θtotal| = (|θest| − 3) · n+ 3. Further-

more, the computations complexity for the first level is O(n3), and for the second level,

it is O(dim2 · n3).

The non-stationary model described in [8], allows for a greater degree of flexibil-

ity in modeling the smoothly-varying scale matrix. Yet, one major drawback of the

above model, especially, for applications of real datasets, is the estimation of the many

parameters of various processes in the model hierarchy. This drawback could lead

to overfitting and mixing issues, as pointed out by [107, 108]. As can be seen from

Equation 3.19, the order of the parameter space is (dim4 · n), and when dim = 2 the

cardinality of the parameters to be estimated is |θest| = 19. Furthermore, in [8] the

extension of the above model to s ∈ R(dim=3) is prescribed, but not recommended, due

to its infeasibility in estimating a high-dimensional parameter space.

A more recent approach in [107] models the spatially-varying geometrical anisotropy

using a covariate based regression, i.e., Σ(s) = Ψ + Γx(s)x(s)TΓT . Here, Ψ represents

the error covariance matrix, and Γ refers to the variability matrix in the covariate
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space, m. Here, the total number of parameters in modeling the geometrical anisotropy

is reduced from the number of observations, n, to that of the dimension of the covariate

space, m. Even though the restriction of the parameter space as a function of the

covariate space by [107] is useful, it is unclear how many attributes of the covariate

space one requires to explain the local stationarity in the input space of the dataset.

Moreover, parameter estimation of the various levels in the model hierarchy remains

a challenging task, especially in a high-dimensional covariate space. In Chapter 4, we

propose a non-stationary covariance function to circumvent some of the issues with the

spatially-varying geometric anisotropy in a high-dimensional covariate space.

3.3 Geostatical Simulation

In Chapter 6, we propose a method to compare Earth system models and simulate future

projections of climate-related variables. To capture the variability of future climate

projections at locations around the globe and across ensemble members, one requires

a multivariate model framework. Hence, we employed the basic model of multivariate

normal (MVN) sampling to show the validity of our approach in drawing samples from

a MVN distribution on a manifold of covariance structure. In this section, we briefly

describe relevant concepts and establish the notations pertaining to Chapter 6.

If Z(s) = {Z1(s), . . . , Zn(s)} follows the standard multivariate normal, MVN(µ,Σ),

and assuming there exists an affine transformation, the multivariate samples, z̃, can be

drawn as follows:

z̃ = µ+ Σ(θ)
1
2 ε, (3.20)

where µ is the multivariate mean, Σ is the multivariate covariance matrix, and ε ∼

N (0, I) is the standard normal random noise vector. Assuming independence, the

parameters of the distribution can be estimated as follows:

µ̂ =
1

n

n∑
i=1

zi , Σ̂(θ) = σ2
ZH(ΣZ) + σ2

Y I. (3.21)

In this preliminary study, the correlation matrix, H, is computed from a stationary
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multivariate correlation function. The parameters, θ = {σY , σZ ,ΣZ}, of the covariance

matrix, i.e., noise variance, signal variance, and scale matrix, are estimated by maxi-

mizing the likelihood function (MLE) and using standard optimization techniques. The

likelihood function for the standard MVN is of the form:

L(θ|z1, . . . , zn) ∝ |Σ(θ)|−n
2

n∏
i=1

exp

(
−1

2
(zi − µ̂)TΣ(θ)−1(zi − µ̂)

)
, (3.22)

where n is the number of ensemble members, and zi is a vector field of climate model

outputs. Furthermore, to evaluate the drawn samples from the distribution, in Chap-

ter 6 we used a classical geostatistical tool of the experimental semi-variogram plots.

For additional details of the semi-variogram plots see [102].

In this chapter, we discussed relevant concepts from the geostatistical literature for

estimation and simulation. In the next several chapters, we propose a new paradigm

for using a high-dimensional manifold for the geostatistical models.
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Chapter 4

Non-stationtionary Geostatistical Model

The lines are strong and the colors are diffused . . . as if the artist was in two mind while

creating his masterpiece. Similarly, the many choices a mind of a modeler faces . . . is

the true process local, regional, or global?

4.1 Introduction

A stochastic process representing complex physical systems is known to exhibit dis-

tinct regional variability. For example, the sea-level change phenomena near Northern

Europe is dominated by the physics of the Glacial-isostatic adjustment. On the other

hand, tectonics dominate sea-level changes near Japan [109]. Similarly, topographical

characteristics, such as land and ocean, have distinct effects on the regional variability

of many climate-related processes.

In Section 1.3, we briefly discussed the problem of estimating the regional sea-level

changes near North America. An ad-hoc approach for estimating the process, which

addresses the regional variability, includes clustering near-by processes based on domain

knowledge. For example, Figure 4.1 depicts an ad-hoc method commonly used in the

climate community for estimating sea-level changes around North America [34, 31].

A systematic approach to model the regional variability of a physical process could

translate to modeling an appropriate covariance structure for the stochastic process. In

this chapter, we propose a framework for modeling a covariance structure that learns the

underlying distinct regional variability from the dataset. The core idea of our framework

is based on, first, modeling the Gaussian process (GP) using the spatially-varying non-

stationary covariance function, and, second, modeling the local property of anisotropy

using the Riemannian manifold of symmetric positive definite (SPD) matrices. Hence,
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Figure 4.1: Example of a standard climate scientist approach for estimating the spa-
tiotemporal, regional phenomena from climate-related datasets: (a) first, estimate the
time series at various tide-gauge sites, and (b) then spatially cluster tide-gauge sites
based on geophysical processes to provide the regional phenomena.

we call our framework with the mouth-watering name of the high-dimensional manifold

non-stationary Gaussian process (HD-NSGP). Relevant concepts for the statistics on

SPD spaces is described in Chapter 2, and the background for the spatially-varying non-

stationary covariance function is given in Section 3.2. In the next section, we further

elaborate on several models in the spatial statistics literature that describe second-order

non-stationarity in the process.

4.2 Previous Work

The vast literature on modeling a non-stationary covariance structure, dating as early

as the 1990s, can be generally categorized as: spatial deformation models, basis func-

tion models, smoothing methods, process convolution models, and stochastic partial

differential equation methods.

One of the earliest works on non-stationary models for the environmental appli-

cation, by [19], used deformation models. The authors used a non-linear mapping

to transform the geographic regions to a space which is stationary and isotropic. A

Bayesian approach to improve the mapping function of the deformation model was
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later introduced by [110, 111]. These Bayesian models require complex and expensive

algorithms for parameter estimation; hence, they are usually unfit for high-dimensional

spaces. For high-dimensional spaces, up to the dimension of m = 19, [112] proposed a

meta-modeling formulation using simulation datasets. Another issue with deformation

models is that it requires replicates of the dataset to estimate the non-linear mapping

function. To address this issue, [113] introduced a deformation model in two-dimensions

and from a single realization. The authors partitioned the neighboorhood of the in-

put space into independent processes and estimated parameters using an approximate

local-likelihood based approach.

A computationally favorable class of models is the basis function model that was pi-

oneered by Nychka and colleagues [114, 115, 116, 117]. In these models, the central idea

is based on approximating the spatial covariance function using a linear (or weighted

sum) combination of orthogonal (or non-orthogonal) basis functions. Furthermore, the

degree of smoothness in the data was determined by the number of basis function levels

used in the model. For large datasets on a regular grid, [115] devised a multiresolution

wavelet (non-orthogonal) basis function decomposition. The authors of [115] showed the

applicability of their method on the replicates of ozone model outputs around Illinois

and Ohio. Later, [117] provided an extension for irregularly spaced input space.

An alternative modeling strategy is to use the Gaussian Markov random field (GMRF)

of [118]. GMRF has shown promise for large, discretely indexed datasets. Further-

more, [118] showed an explicit link between GMRF and some classes of non-stationary

GPs by solving stochastic partial differential equations (SPDE). The computational

benefit was achieved by modeling directly the precision matrix using the GMRF rep-

resentation. Yet, for applications the overhead cost of problem specific neighborhood

structure using triangulation and preprocessing of SPDE has been challenging.

A popular class of models, specifically, process convolution models, naturally con-

struct the local properties by spatially varying the parameters. In these models, and

as introduced in [119], the non-stationarity in the process is achieved by using kernel

convolution, where the kernel function can be parameterized locally. An alternative
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approach by [120, 121, 122] varies the stochastic process over the input space, but, pa-

rameterizes a constant kernel function. The resulting convolution of the locally weighted

stationary process, in practice, only approximates the chosen covariance function.

In Section 3.2.2, we described the concepts of a particular kind of process convo-

lution model that is most relevant to this thesis. For this model, [7] introduced an

analytical solution to process convolution by selecting a Gaussian kernel function and

bi-variate Gaussian scale matrix parameter that is spatially-varying. [8] generalized this

analytical solution to include the Matérn function and provided a flexible model for the

spatially-varying scale matrix parameter using stationary GPs. In [18], an extension to

include the spatially-varying smoothness parameter of the Matérn function was formu-

lated. Further extension to multivariate spatial processes when multiple realizations are

available was derived in [123]. The spatially-varying non-stationary cross-correlation

function, as formulated in [123], is modeled using a kernel smoothed empirical co-

variance function. For the application of the model in [123], a bi-variate process of

temperature and precipitation is estimated from the regional climate model outputs.

A critical bottleneck in the process convolution class of models is estimating the

spatially-varying parameters. For large datasets, such as satellite data, [124] designed

a Bayesian model for estimating the spatially-varying parameters using low-rank mod-

els. [95] shows the limitations of low-rank models for spatial processes and recommends

using independent contiguous blocks of input space when modeling. Interestingly, this

recommendation aligns with our philosophy of modeling the spatially-varying parame-

ters by establishing a neighborhood structure on a high-dimensional geometric space,

and, hence, rendering a flexible regional model.

An alternative strategy by [107, 108, 125] uses covariate information to model the

spatially-varying parameters in the non-stationary covariance function. In particu-

lar, [107] uses a covariate-based regression for modeling the spatially-varying parameter.

Moreover, [107] parameterizes the dependence of the covariates to the spatially-varying

scale matrix by constraining the two-dimensional SPD matrix to a three-dimensional

conic geometry, and, then, estimating each of the parameters using appropriate priors
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in the fully Bayesian fashion. [107] further illustrates the importance of covariate infor-

mation, such as elevation and its gradient, for modeling the non-stationary process of

the two-dimensional precipitation dataset around Colorado.

In the next section, we propose an unconstrained, non-parametric, data-driven

model for the spatially-varying scale matrix parameter of the non-stationary covari-

ance function. We further discuss the potential of including the covariate information

or a data-fusion model in Chapter 5. The main idea for our model is to use the prop-

erty of SPD space and to establish the high-dimensional geometric structure using the

Riemannian manifold framework. Hence, our approach allows for additional flexibility

in the degree of smoothness of the scale matrix parameter and guarantees a valid non-

stationary covariance function. The relevant background for estimating SPD matrices

on a Riemannian manifold is described in Chapter 2.

In this section we discussed various non-parametric methods for modeling non-

stationarity in the spatial processes for a particular domain of applications. None,

including our model, is a one-size-fit-all application. Furthermore, most of the non-

stationary methods require complex model-fitting procedures, and, for an implementa-

tion in a general setting, a readily available software has not yet been provided. Hence,

most methods, including ours, will usually resort to comparing with stationary models

for which a general software is readily available.

4.3 High-Dimensional Manifold Non-stationary Gaussian Process

An overview of our framework for modeling the spatially-varying geometric anisotropy,

or the scale matrix, for the non-stationary covariance function is illustrated in Fig-

ure 4.2. Here, the fit of the ellipses around the tide-gauge locations are improved by

using intrinsic statistics on the high-dimensional manifold of SPD matrices.1

1In this chapter, we represent the points in the input space with the notation xi , x(si) so that,
later, we can generalize the model for the implementation of spatiotemporal datasets or the covariate
information.
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Figure 4.2: The proposed framework for the high-dimensional-manifold non-stationary
covariance function. Here, the geometric anisotropy (i.e., ellipses) around (a) eastern
North America are modeled using the (b) spatially evolving kernels and (c) further
improved by estimating them on a statistical manifold of symmetric positive definite
matrices.

4.3.1 Proposed Model

The model for the stochastic process, {Z(x) : xi ⊂ Rm}, using the Gaussian process

is given in Equation 3.2, and for the spatially-varying non-stationary Matérn correla-

tion function, ρNS(·, ·), see Equation 3.12. An important ingredient in the correlation

function, besides the smoothness parameter, is what we call the dissimilarity function,

qNS(xi,xj). In Equation 3.13, a model of the dissimilarity function by [8] is outlined.2

Here, the spatially-varying geometric anisotropy, Σij , is an average of the scale ma-

trices, {Σi,Σj}. The scale matrices are centered at each location in the input space,

xi, and are modeled using an eigendecomposition, as described in Equation 3.17. We

propose an alternative strategy to model the dissimilarity function, and, consequently,

the spatially-varying non-stationary covariance function, as follows:

2In [8], the quadratic form of qNSij is also called the scale mixture of kernels, and the scale matrix,
Σi, is called the kernel matrix.
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ρHDNS(xi,xj) = 2
m
2 |Σr(i)|

1
4 |Σr(j)|

1
4 |Σr(i)+Σr(j)

2 |
− 1

2
ρS(ν, qHDNSij ), (4.1a)

qHDNSij = (xi − xj)T
(

Σr(i)+Σr(j)
2

)−1
(xi − xj), (4.1b)

Σr(i) ∼ N (Σ̄,Λ). (4.1c)

Given a region, r(i) , r(xi), associated with the location, xi, the scale matrix

parameter, Σr(i), is modeled using the intrinsic statistics on a manifold of SPD matrices,

S+(m,R). In Equation 2.5, we describe the probability density function (PDF) of the

generalized normal distribution for the SPD matrices with the a mean parameter, Σ̄,

and a variance-covariance parameter, Λ, as defined on the Riemannian manifold. To

circumvent the computationally intensive normalizing factor of the PDF, Equation 2.6

provides a simplified version. The PDF in Equation 2.7 describes further simplification

by replacing the variance-covariance matrix, Λ, with a scalar variance, σ2, version of

the generalized normal distribution.

The primary difference in our covariance function construction, as described above,

when compared to Equation 3.12, as given in [8], is the model for the scale matrix,

Σi. While [8] prescribes stationary GPs for each of the parameters in the eigendecom-

position of the scale matrix, we directly sample, or estimate, the scale matrix from

the distribution defined on the manifold of SPD matrices. However, we still need to

show that our construction is valid. In the theorems below, we show the validity of our

construction.

Theorem 1. The spatially-varying non-stationary covariance function, as constructed

from the Equation 4.1, is a valid non-stationary covariance function.

Proof. For the covariance function to be valid the only requirement is that it is positive

definite. Theorem 1 in [8], states that the construction of the non-stationary correlation

function of Equation 4.1a is positive definite as long as the scale matrix associated to

each location is a SPD matrix, i.e., Σi ∈ S+(m,R).
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Our formulation of the scale matrix, Σr(i), at each location or its associated region,

as given in Equation 4.1b, is constructed on a smooth, i.e., C∞, Riemannian manifold of

SPD matrices, Σr(i) ∈ GL(m,R). Furthermore, we chose an affine-invariant metric, and

its associated affine connection, to facilitate the algebraic operations in gl(m,R) for the

estimation, or sampling, of the real symmetric matrices, S(m,R), on the tangent space

of the manifold, TΣ̄M. In particular, the exponential map, ExpΣ̄(Σr(i)) : S+ → S,

and the logarithmic map, LogΣ̄(Σr(i)) : S → S+, provides us with essential tools to

perform the intrinsic statistics for scale matrices, {Σr(i)}, and, further, guarantee that

Σr(i) ∈ S+(m,R). For details, see Chapter 2 and the references of the proofs therein

mentioned.

By construction, on a smooth manifold with the affine-invariant metric we are guar-

anteed an outcome of the scale matrix estimation procedure to be a SPD matrix, i.e.,

Σr(i) ∈ S+(m,R). Hence, our prescription of the non-stationary covariance function, as

given in Equation 4.1, is valid.

Theorem 2. A non-stationary Gaussian process, Z(·), is Mth-order sample path and

mean square differentiable for the non-stationary correlation function, ρHDNS(·, ·), as

given in Equation 4.1, if the associated stationary correlation function, ρS(·), is Mth-

order sample path and mean square differentiable.

Proof. The proof is an application of the infinitely differentiable, complete Riemannian

metric space of the scale matrix parameter, Σr(i), to the sample path and mean square

differentiability theorems of the non-stationary Gaussian process in [8] (i.e., Theorem

11 and Theorem 12).

We assume without loss of generality that the signal variance, σ2
Z(x), and the noise

variance, σ2
Y (x), as given in the covariance function formulation of Equation 3.7, is

either constant or infinitely differentiable. Hence, the smoothness properties of the

process, in turn, primarily depends only on the mean square and sample path properties

of the correlation function.

Moreover, the smoothness properties of the process in the theorems of [8], have
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an additional dependence on the smoothness properties of the independent stationary

Gaussian processes involved in modeling the scale matrix parameter. In particular, the

scale matrices are non-singular and its elements suffice at least M+1th-order sample

path differentiability and Mth-order mean square differentiability. In Lemma 8 (of [8]),

these conditions on their model of the scale matrix parameter are shown to exist.

In our model of the scale matrix parameter, the manifold chosen is C∞ differen-

tiable. Hence, we are guaranteed at least an M+1th-order partial derivative of the

random fields, as given in Equation 2.5, and, that is associated to the scale matrices,

i.e., Σr(i), Σr(j), and (Σr(i) + Σr(j)). Furthermore, the chosen metric and the distance

function on the manifold, as given in Section 2.2.3 and Equation 2.3, is complete. Hence,

we are guaranteed that the scale matrices are bounded and non-singular. Therefore, by

construction the smoothness properties of sample path and mean square differentiability

for the non-stationary Gaussian process only depends on the associated, chosen station-

ary correlation function. Note, the smoothness properties of the stationary correlation

function are described in Section 3.2.2.

Hence, by introducing intrinsic statistics directly on the SPD space of the scale

matrix parameter, rather than a separate stationary process for each element of the

matrix, one can potentially achieve greater flexibility in its estimation while maintaining

the smoothness properties of the primary spatial process, {Z(·)}, used for modeling the

data. In the next section, we describe the techniques for the parameter estimation of

our model.

4.3.2 Parameter Estimation

For complex, high-dimensional models, including our proposed model from the previous

section, parameter estimation using likelihood-based schemes is usually analytically and

numerically intractable. In Section 3.2.1, we pointed out the widely used parameter

estimation scheme for a GP model, which is the Markov Chain Monte Carlo (MCMC)
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method. For Bayesian inference, MCMC generates samples of the posteriors, or predic-

tive distributions, when the chain reaches the equilibrium distribution. In other words,

the goal is to sample the posteriors of the parameters, p(θ|{Y,x}), from the training

set, {Y,x}, such that the posterior predictive mean is ̂E[Y∗|Y] = L−1
∑L

l=1 Y∗l . Here,

the posterior samples, Y∗l , at the test location, x∗, are generated from the conditional

distribution of [Y∗l |θl,x∗,Y,x], as described in Equations 3.4 and 3.5.

In the MCMC literature, there are vast variants of the sampling schemes developed

for certain classes of models or applications [126, 127]. For example, the NSGP model

in [8] prescribes a posterior mean centering scheme (PMC) to propose the posteriors

and the parameters of the model jointly. Additionally, PMC was designed to deal with

the various mixing issues of the embedded GP processes in the NSGP model. Another

popular variant of MCMC in the high-dimensional covariate space is a hybrid scheme,

such as the Hamiltonian Monte Carlo scheme (HMC) [128] or the Metropolis Adjusted

Langevin Algorithm (MALA) [129]. These hybrid schemes are useful because they

provide the appropriate direction of the proposals toward the target densities by using

the information of the gradient of the process. However, it is not clear if the hybrid

models would improve the hyperparameter mixing of complex non-stationary models.

For our proposed model, the gradient of the process in closed form is currently not

available. Furthermore, the primary goal of the variants of the basic MCMC scheme is

to improve the mixing of the chain, and, moreover, to aid its convergence towards the

target distribution. Hence, for our pilot implementation, we resort to a flexible MCMC

scheme by [130], which we have found to provide satisfactory results in our simulation

study in Section 4.4. In addition, this MCMC scheme is also applicable to non-Gaussian

data. Intuitively, the implemented MCMC scheme guides the joint proposals by using

an elliptical slice sampler in conjunction with a surrogate GP. The advantage of using a

surrogate GP step is that it randomly reparameterizes the proposals around the current

state. Also, the elliptical slice sampler adaptively adjusts the hyperparameters of the

covariance function.

For the proposed covariance function, i.e., Equation 4.1, the parameters to es-

timate are the signal variance, noise variance, smoothness, and scale matrices, i.e.,
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θY = {σY , σZ , ν,Σi}. In addition, the hyperparameters for the scale matrix model,

{Σi}, are θΣ = {|r|, {Σ̄}(1,...,|r|), {Λ}(1,...,|r|)}. Here, the number of clusters, or re-

gions, are |r|, and, the mean and variance-covariance matrices for the regional dis-

tribution of the scale matrix on a manifold are Σ̄r(xi) and Λr(xi), respectively. The

total number of parameters to estimate at the first level in the model hierarchy is

|θlevel=1| , |θY | = 3 + |r| · (m + m(m−1)
2 ), and at the second level is |θlevel=2| , |θΣ| =

1 + |r| · (m+ m(m−1)
2 ) + |r| · (m2 + m2(m2−1)

2 ). Hence, the number of parameters to be

estimated, |θest|, discounting the parameters of the priors for θlevel=1 and θlevel=2, can

be written as follows:

|θest| =
(

3
)

+
(

1 + |r| · (m+ m(m−1)
2 ) + |r| · (m2 + m2(m2−1)

2 )
)
. (4.2)

Note, the dimension for the parameter space, discounting the prior, is |θtotal| = |θest|.

The computational complexity for generating each sample in the MCMC involves

O(n3) for the first level and O(|r| · (m2)3) for the second level. The hyperparameters

for the scale matrix can be further reduced by assuming a diagonal only, or scalar,

variance and a homogeneous, or stationary, scale matrix process within the regions,

i.e., θΣ = {|r|, Σ̄,σΣ}. This reduces the number of parameters in the model to |θΣ| =

1+(m+m(m−1)
2 )+m2 and the computations complexity for the second layer toO((m2)3).

Hence, the number of parameters to be estimated, |θest|, can be written as follows:

|θest| =
(

3
)

+
(

1 + ·(m+ m(m−1)
2 ) +m2

)
. (4.3)

Here, the dimension for the parameter space, discounting the prior, is as follows:

|θtotal| = (|θest| − 3) · |r|+ 3.

In Proposal Scheme 1, we outline the suggested MCMC scheme for our proposed GP

model (HD-NSGP). Steps 1 and 2 in the MCMC scheme refer to the surrogate GP step;

Steps 3, 11, and 13 refer to the elliptical slice sampler steps; and Step 4 refers to the

parameter proposal. The parameter proposals corresponding to our covariance model

are further outlined in Proposal Schemes 2 and 3. Note, without loss of generality and

to simplify the prior specification, we assume the input space to lie in an m-dimensional



59

unit hypercube, i.e., xi ∈ [0, 1]m.

Proposal Scheme 1: Outline of the suggested MCMC scheme for the HD-NSGP
model.

Input: GP model (from Equation 3.2), covariance function (from Equation 4.1), vector

of response or latent variables, Y, initialized parameter values of the model, θ =

{θY , θΣ}, vector of elliptical slice sampler scale, σess.

Output: Posterior samples of θ′, Y′.

1: Sample surrogate data h ∼ N (Y,Ksurr(θ)).

2: Compute implied variates ω = L−1(θ)(Y − µθ,h). The cholesky decomposition

over here refers to the auxiliary GP model’s covariance matrix, i.e., L(θ)LT (θ) =

(K−1
hd-nsgp(θ) +K−1

surr(θ))
−1

.

3: Re-center the parameter bounds: b ∼ U(0,σess), θmin = θ − b, θmax + σess.

4: Propose new sample of parameters from the proposal distribution, i.e., θ′ ∼ q(θ′;

θ, θmin, θmax). There are two parts to this proposal. First, is the proposal of θY ,

which is explained in Proposal Scheme 2. Second, is the proposal of θΣ, which is

described in Proposal Scheme 3.

5: The Metropolis-Hasting step, i.e., draw a ∼ U(0, 1), where the Metropolis-Hasting’s

ratio is as follows: min
(

1, P (θ′,Y′|data)·P (h|Y′,Ksurr(θ′))·q(θ;θ′)·|L−1(θ)|
P (θ,Y|data)·P (h|Y,Ksurr(θ))·q(θ′;θ)·|L−1(θ′)|

)
.

6: Determine the threshold for the slice sampler: τess = aL(Y)N (h; 0,Khd-nsgp(θ) +

Ksurr(θ))p(θ).

7: Compute the posterior samples Y′ = L(θ′)ω + µθ′,h.

8: if (L(Y′)N (h; 0,Khd-nsgp(θ′) +Ksurr(θ
′))p(θ′) > τess) then

9: return {Y′, θ′}.

10: else if (θ′ < θ) then

11: shrink the proposal bracket by θmin = θ′.

12: else

13: shrink the proposal bracket by θmax = θ′.

14: end if

15: Loop back to step 4.
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The surrogate GP augments the response variable, Y, with an auxiliary vari-

able, h, such that [h|Y, θ] ∼ N (Y,Ksurr(θ)). The marginal distribution is then

given as [h|θ] ∼ N (0, (Khd-nsgp + Ksurr)), and the posteriors are [Y|h, θ] ∼ N (µh,θ,

(K−1
hd-nsgp + K−1

surr)
−1). By using basic linear algebra, the auxiliary mean values are

µh,θ = Khd-nsgp(Khd-nsgp +Ksurr)
−1h. For convention, we denote the covariance matrix

of our proposed model as Khd-nsgp, the covariance matrix of the surrogate GP as Ksurr,

and the conditional likelihood as L(Y ) = P (training data|Y ). A straightforward surro-

gate covariance model of Ksurr(θ) = αI acts as a free parameter that limits the sampling

region for the updates of Y . The NSGP model in [8] uses a similar reparametrization

scheme by centering the sampling updates around the posterior means. An alternative

fixed reparametrization scheme is also described in [131]. Note, when α → ∞, the

MCMC scheme tends to uninformative priors in the sampler, and, in the limiting cases,

it acts similar to that of whitening the priors.

For the analytical GP model, one can model the surrogate covariance using a Lapla-

cian approximation. Unfortunately, our GP model does not have a closed-form solution;

hence, we chose an appropriate α based on the preliminary runs. Another free parame-

ter in Scheme 1 is the slice sampling parameter, σess, which adjusts the width of the prior

distribution. In our experiments, we appropriately set the width, σess, to the largest

feasible values of the priors. Furthermore, the priors were assumed to be independent,

i.e., p(θ) = p(θY )p(θΣ), and all of the hyperparameters for the prior distribution were

chosen so that they were vague but proper.

In Proposal Scheme 2, we outline the sampling procedure for the geostatistical

parameters of the signal variance, noise variance, smoothness parameter, and scale ma-

trix. The smoothness parameter of the Matérn covariance function is known to exhibit

difficulties in the estimation. For the technical details on estimating the smoothness pa-

rameter see [132]. For the climate-related dataset, it is well known that ν = 1 provides

a good fit of the underlying smoothness of the process. Hence we used the profile likeli-

hood scheme, or integrated the smoothness parameter out of the model using a discrete

set of parameters, ν = {0.5, 1, . . . , 5, 5.5}. For further details on the profile likelihood

scheme see [1]. Other parameters in the Matérn function, i.e., signal and noise variances,
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were proposed from their conditional distributions and using appropriate conjugate pri-

ors. Furthermore, the hyperparameters of the priors were re-centered from Step 3 of

Scheme 1. Alternatively, many authors have recommended a re-parameterization of the

variances for improving the estimation. For example, [133] proposes to reparameterize

the geostatistical parameters of the Matérn function to {log
(
σ2
Z/Σ

2ν
)
, log

(
Σ2ν

)
}.

Proposal Scheme 2: For the geostatistical parameters, θY = {σZ , σY , ν,Σ}.

1: For the priors of ν, a small sample of discrete set were used, i.e., ν =

{0.5, 1, . . . , 5, 5.5}.

2: Propose noise variance, σ2
Y , from their conditionals [σY |Y, σZ , ν,Σ] and conjugate

priors p(σY ) ∼ IG(aY , bY ).

3: Propose signal variance, σ2
Z , from their conditionals [σZ |Y, σY , ν,Σ] and conjugate

priors p(σZ) ∼ IG(aZ , bZ).

4: Compute the scale matrix, Σr(i), from the Proposal Scheme 3 or 8.

Proposal Scheme 3 outlines the sampling procedure for estimating the scale ma-

trix parameter. In Step 1, the nearest neighborhood parameter, |r|, of the spatially-

varying scale matrix, Σr(i), is sampled from a discrete set of values. For the climate-

related dataset, we chose an appropriate range of values for |r| that are informed by

the geophysics of the climate variable. Alternatively, one can parametrize the radius

of the spatial clusters from the measure of dispersion in the scale matrix samples,

i.e., tr(Λ(Σi=1, . . . ,Σ|r|)) ≤ τ2
|r|, where the threshold is proposed from the priors, i.e

τ|r| ∼ N (0, 1). In this scheme, the spatially-varying scale matrix is set to the mean of

the spatial cluster, i.e., Σr(i) = Σ̄(Σi=1, . . . ,Σ|r|). Here the mean and variance of the

scale matrix are computed on the SPD manifold using Equations 2.9 and 2.12, respec-

tively. See [134], for the recommendation of using the trace of the diffusion tensor, Λ,

as the direct measure of dispersion in the local diffusion process. The intuition for the

aforementioned proposal is that small differences in the scale matrix within a region

could possibly result from an artifact of the estimation procedure, an over-smoothed

parameterization, or small datasets. In such cases, a conservative modeling approach
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Proposal Scheme 3: For the spatially-varying geometric anisotropy or scale matrix
parameters, θΣ = {|r|, Σ̄,Λ}.

1: Sample |r| ∼ U{a|r|, b|r|}, where min(a|r|) = 1 and max(b|r|) = n. In the case of

climate-related datasets, the hyperparameters are informed by the geophysics of the

climate variable. In the case of simulated datasets, we use uninformative priors,

such as the uniform discrete distribution.

2: To jointly sample Σr(i) ∼ N (Σ̄,Λ), we can use the spectral decomposition property

of the SPD matrix, such that Σr(i) = Σ̂(λ,U) · Σ̄1/2 ∼ N (Σ̄, σ2
Σ
I) and Σ̂(λ,U) ∼

N (I, σ2
Σ
I).

3: To sample U , first sample {Ai}(i=1,...,m×m) independently from N (0, 1) to form a

matrix of Am×m. Then, use QR-decomposition to find U , i.e., [U,∼] = qr(A). The

theorems for such a construction can be found in [22](pp. 70).

4: To sample λ = {λ1, . . . , λm} jointly from the multivariate PDF of Equation 2.7, we

follow the construction of [92], as given below:

p(λ) = (m!2m)−1 ωm 8(m(m−1)/4) k−1
scG(σΣ) e(λ2

1+...+λ2
m)/2σ2

Σ
∏
i<j sinh(|λi − λj |/2),

where ωm = 2mπ(m2/2)

Γ(m/2) and kscG is given in Equation 2.12. When m = 2, the above

PDF simplifies to an analytical solution for {λ1, λ2}, and when m ≥ 3, a look-up

table can be generated.

5: Finally, to sample {Σr(i)}, compute the following: Σr(i) = Σ̂ · Σ̄1/2.

of assuming stationarity within a small region could potentially produce an improved

prediction.

Another alternative to the HD-NSGP model is first to train the model using the

NSGP model, and then to represent the spatially-varying scale matrix using the cluster

mean. This modeling strategy is briefly descried in Proposal Scheme 8, Appendix B.2.1.

Here, the cluster size is estimated using the aforementioned proposal scheme, i.e., either

informed by the geophysics or estimated by constraining the scale matrix dispersion

within the spatial regions. Such a model allows the flexibility of regional stationarity

to the spatially-varying NSGP, i.e., Σi → Σr(i). For example, when |r| = 0 the NSGP
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models reduces to the SGP model; when |r| = n, the model is NSGP; and when

0 < |r| < n, the NSGP model follows the HD-NSGP model. In such a modeling

strategy, the training stage uses the additional parameterization of the GP processes

for estimating the scale matrix, but the predictive, or posterior, distribution still follow

the proposed HD-NSGP model.

To avoid using additional GP processes in the training phase, we sample the scale

matrix directly from the SPD manifold, i.e., Σr(i) ∼ N (Σ̄,Λ). The samples for Σr(i)

can either follow the PDF of Equation 2.5 or the simplified normalization factor version

as given in Equation 2.6. For computational simplicity, the PDF with a scalar version

of the variance parameter, and for m = 2, is given in Equation 2.7. The proposal of

scale matrix parameters, {Σ̄, σ2
Σ
I}, are outlined in Steps 2 to 5 of Proposal Scheme 3.

The joint proposal of the mean, Σ̄, and variance, σΣ , follows from the construction

described in [22] and [92]. A straightforward extension to a variance-covariance matrix,

i.e., σΣ → Λ with m ≥ 2 can similarly be constructed. However, the computational

complexity increases as the normalization factors, kG and kSG, are more involved in the

PDF of Equations 2.5 and 2.6, respectively. For an extension to m ≥ 2, a lookup table

for the normalizing factor, kscG, can be generated using the Monte Carlo method.

We initialize the sampler using the parameters of the SGP model fit. The scale

matrix at the test points is sampled from its association to the nearest neighbor training

data points. Note, since the conditionals of the scale matrix parameter during the joint

proposal is unknown in Proposal Scheme 3, they are sampled from the prior correlation

instead of the more favorable choice of the posterior correlation. Furthermore, the

priors for the simulation dataset are chosen uninformatively, but, for the climate-related

datasets, informative priors improve the estimation. Hence, for the sea-level datasets,

we follow the priors and their hyperparameter values from [34]. A useful future exercise

would be to develop a maximum likelihood-based estimation procedure for HD-NSGP,

similar to [113], for improving the estimation procedure.
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4.3.3 Evaluation Procedure

The stationary and non-stationary GP run on the test set, {x∗i , y∗i }i=1,...,n, was eval-

uated using the following three criteria: the mean squared error (MSE), negative log

predictive density (NLPD), and continuous rank probability score (CRPS).

The mean square error evaluates the predictive mean estimates, {ŷi}, of the model

at the test locations using the following formulation:

MSE =
1

n

n∑
i=1

(y∗i − ŷi)2. (4.4)

For the GP model, the posterior predictive mean estimate was averaged over the MCMC

sample, {θj}j=1...J , draws, Y ∗|Y , θj , from the posterior p(θ|Y ).3 A smaller MSE value

suggests a better point estimates of the dataset.

To compare the entire predictive distribution under consideration, we evaluated the

negative log predictive density, NLPD = − log(p̂(Y ∗|Y )). NLPD criteria is discussed

in [135] and was used by [8, 107] to evaluate non-stationary models. For the GP model,

NLPD was averaged over the MCMC draws from the posteriors as follows:

NLPD = − log

 1

J

J∑
j=1

p(Y ∗|Y , θj)

. (4.5)

A smaller NLPD value suggests a better fit of the predictive model.

Finally, as pointed out in [107], we used the continuous rank probability score, in-

stead of the information-theoretic criteria, to compare the stationary and non-stationary

models. Information-theoretic criteria, such as KL-divergence, was previously used

by [8] to evaluate the non-stationary model. As discussed in [136], stationary models

and non-stationary models have different ranks of kernel process representation, and,

hence, CRPS is a better metric for evaluation. CRPS is introduced in [137] and de-

fined as: CRPS(Fi, y
∗
i ) = −

∫∞
−∞(Fi(x) − I(x ≥ y∗i ))

2dx. Here, Fi(·) is the cumulative

distribution function for y∗i , and I(·) is the indicator function. For the GP model, Fi(·)

is the conditionally Gaussian predictive cumulative distribution function, and CRPS is

3See Equation 3.5 for the predictive mean estimate of the GP model.
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averaged over the MCMC draws from the posteriors as follows:

CRPS = n−1
n∑
i=1

(
− J−1

J∑
j=1

∫ ∞
−∞

(
Fi(x; θj)− I(x ≥ y∗i ))2dx

)
. (4.6)

A larger CRPS value suggests a better fit of the predictive model.

4.4 Simulation Study

To gain insight into the applicability of our proposed covariance function, we con-

structed a simulation function from a regionally parameterized Gaussian process. Our

construction of the simulation function was influenced by many of the climate-related

processes that are known to exhibit regional characteristics. The proposed simula-

tion function also allowed for various degrees of smoothness within and across the

regions. Such smoothness properties in the physical process are commonly found in

many climate-related processes. Examples of some of the climate-related processes

with regional characteristics are discussed in Section 1.3 and illustrated in Figure 1.1.

In [8], the two-dimensional simulation study for the non-stationary model used the

Hwang function [138], which is based on the complex interaction of surfaces. A real-

ization from the Hwang function is shown in Figure 4.3a. Even though this simulation

function is non-stationary, it is fairly smooth and homogeneous. Furthermore, it lacks

the complex regional geophysics that is commonly encountered in climate-related pro-

cesses. Hence, in the next section, we propose a simulation function that emulates well

the physical process. A realization from our proposed simulation function is shown in

Figure 4.3b.

4.4.1 Experimental Setup

The univariate simulation function, y(·), from a two-dimensional input space, m = 2,

was constructed as follows:
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Figure 4.3: Simulated surfaces from the (a) Hwang function and (b) our proposed
simulation function.

y = f1(x)w(x) + f2(x)(1− w(x)), (4.7a)

fi(x) ∼ GP(0, σ2
fi
HS(x; νfi ,Σfi) + σ2

y
fi

I), (4.7b)

w(x) = Aw +
Kw −Aw

(Cw + e−Bw(x−Mw))
1/νw

. (4.7c)

Here, the two-dimensional input space was modeled using two separate stationary

Gaussian processes, {fi}(i=1,2), with the parameters of signal variance, noise variance,

Matérn’s smoothness parameter, and scale matrix, {σ2, σ2
y , ν,Σ}fi . The stationary cor-

relation function was Matérn, as given in Equation 3.9, and was used to compute the

correlation matrix, HS . Figure 4.3b shows a sample from the realization of our proposed

simulation function. Similarly, Figure 4.4a shows a sample when the noise variance was

excluded. Based on visual inspection of Figure 4.4a, one can see that the input space

regions of X2 > 0 and X2 < 0 is primarily a Gaussian process realization from the

function of f1 and f2, respectively.

To control the effects of the underlying stationary GPs, {fi}, within the regions

and their transitions across the boundaries at X2 = 0, we weighted the GPs using a

generalized logistic function in two dimensions, w(x), as given in Equation 4.7c. The
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Figure 4.4: Simulation set-up: (a) a sample from the proposed simulation function and
(b) a surface from a parameter of the geometric anisotropy (or the scale matrix).

parameters, {A,B,C,K,M, ν}w, of this S-shaped logistic function controls its asymp-

totic and smoothness properties. See [139] for the various effects of the parameters

on the generalized logistic function. Furthermore, the growth rate parameter of Bw

controls the smoothness of the simulation function, y(·), across the regions, while the

parameter νfi of the stationary GP controls the smoothness within the region.

For the geostatistics application, the standard choice of the smoothness parameter

in the Matérn function was νfi = 1. Moreover, the climate-related processes around

the geophysical boundaries, such as land-ocean or plate tectonics, can potentially have

a smoothly varying jump; hence, we chose the growth rate parameter of Bw = 0.5

for the generalized logistic function. Note, increasing the Bw value also increases the

jump in the process parameters around the boundaries. Other values in the generalized

logistic function were chosen such that the effects of the GPs were regionalized, i.e.,

(A = 0, C = 1,K = 1, ν = 1,M = 0).

For the purpose of our proposed model, in Equation 4.1, we were specifically inter-

ested in the spatially-varying parameter of the scale matrix, or the geometric anisotropy.

Hence, for the two GPs, {fi}, we chose considerably different values for the scale ma-

trix parameters and constant value for the variances. For the signal variance and noise

variance, we set σf = 1 and σy = 0.1, respectively. The scale matrix parameters of
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anisotropic range and angle, i.e., θΣ = {λ1, λ2, ψA}fi , for the two GPs were set as

(50, 30, 45)f1 and (5, 10, 15)f2 .4 To illustrate the variable scale matrix parameters, θΣ,

Figure 4.4b shows one of the anisotropic range parameters, i.e., {λ1}fi , that was selected

for the two separate GPs.

To evaluate the performance of various models, we generated 50 realizations of the

simulation function with the input space range of (−100 : 2 : 100). Additionally, 50%

of the input space samples were uniformly randomly chosen for the training set, {x, y},

and the rest for the test set, {x∗, y∗}.

4.4.2 Results

In this section, we evaluate the performance of the Gaussian process model with various

covariance functions on the simulation dataset. The covariance functions we compared

were the proposed high-dimensional manifold non-stationary covariance function (HD-

NSGP, as defined in Equation 4.1), spatially-varying non-stationary covariance function

(NSGP, as given in Equation 3.12), and stationary covariance function (SGP, as given in

Equation 3.9). Additionally, for the proposed weighted GP simulation function, we ran

the known GP parameters of the stationary covariance functions on two separate known

regions (TGP). The TGP run was intended to emulate the standard climate scientist

approach for modeling the spatial processes based on known geophysical regions (as

illustrated in Figure 4.1).

In Table 4.1, we compared the various GP models against the evaluation criteria

of MSE, NLPD, and CRPS. The various evaluation metrics are discussed in the Sec-

tion 4.3.3. The GP models were run for each of the 50 sets of training and test datasets

sampled from the proposed simulation function. Moreover, from the experimental setup

described in Section 4.4.1, the significance level of 0.01 indicates better performance of

the model in Table 4.1.

From Table 4.1, we see that the non-stationary models (NSGP and HD-NSGP)

perform better than the stationary model (SGP). For both NSGP and HD-NSGP, the

4See Equation 3.16 for the description of the scale matrix parameters.
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Table 4.1: Evaluation of various GP models for the proposed simulation function, as
given in Equation 4.7. The models compared are the stationary Gaussian process
(SGP), spatially varying non-stationary Gaussian process (NSGP), our proposed model
of high-dimensional manifold non-stationary Gaussian process (HD-NSGP), and Gaus-
sian process using the known parameters and the covariance function (TGP). The eval-
uation metrics used are the mean square error (MSE), negative log predictive density
(NLPD), and continuous rank probabilistic score (CRPS).

Simulation
Function

GP
models

SGP NSGP HD-NSGP TGP

Eval Mean STD Mean STD Mean STD Mean STD

Proposed
function

MSE 0.33 0.02 0.31 0.01 0.30 0.01 0.30 0.01

NLPD 0.87 0.01 0.80 0.01 0.78 0.01 0.77 0.01

CRPS 0.47 0.2 0.49 0.1 0.50 0.1 0.50 0.1

standard deviation (STD) in MSE and NLPD is 0.01, which implies that the models

have recovered the true noise variance parameter, i.e., σ2
y = 0.01, of the simulation

function. Moreover, the evaluation metrics’ means for the HD-NSGP test set runs are

better than NSGP, and closest to the TGP model, which suggests that the predictive

model of HD-NSGP has learned the true underlying regional GP processes.

For further inspection of the various GP models, we reconstructed the entire surface

from the model fit. Figure 4.5 illustrates the surface reconstruction of the GP models.5

From visual inspection of the surfaces, we see that the non-stationary models have

recovered the underlying surface better than the stationary models. The stationary

model, as expected, is fairly smooth and homogeneous. Moreover, the HD-NSGP sur-

face has more local areas matched (shown in blue boxes) to the target surface than the

NSGP surface. The mismatch (shown in red boxes) in the NSGP surface is primarily at

the boundaries. One potential reason for the NSGP mismatch at the boundaries could

be that the scale matrix parameters at the boundary locations of the input space are

not accurately estimated. Figure 4.6a, illustrates the smooth GP surface of one of the

scale matrix parameters in the NSGP model and its inaccurate boundary estimates. In

general, a predictive GP model is known to exhibit larger error at the boundaries. In

5In Figure 4.5, the input axes are normalized so that the anisotropy can be appropriately bounded
in the estimation procedure.
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(d) Stationary Model

(b) Proposed Non-stationary Model

(c) Non-stationary Model

(a) Target Surface

Not Matched Matched

Figure 4.5: Reconstructed surfaces from the Gaussian process (GP) model fit of various
covariance functions and the target distribution. The blue boxes show regions matched
to the target distribution sample, and the red boxes indicate mismatched regions. The
surfaces are (a) generated from a sample of the target distribution, (b) reconstructed
from the proposed high-dimensional manifold non-stationary GP model (HD-NSGP),
(c) reconstructed from the spatially varying non-stationary GP model (NSGP), and
(d) reconstructed from the stationary GP model (SGP).

addition to the predictive GP model for the test dataset, in NSGP there are various

GPs that are estimated for the scale matrix parameters. The multiple layers of the GPs

in NSGP could potentially increase the prediction errors, especially at the boundaries

of the test dataset.

The primary goal of our proposed model (HD-NSGP) is to recover the regionally-

varying geometric anisotropy parameter. In Figure 4.6, we depict one of the anisotropic

range (for the scale matrix) parameters posterior mean distribution for the non-stationary

models. For HD-NSGP, Figure 4.6b shows that it has accurately learned the parameter

for the two regional GPs of the simulation function (as illustrated in Figure 4.4b). In

comparison, Figure 4.6a shows that the parameter from the NSGP model is oversmooth

and inaccurately estimated at the boundaries.
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Figure 4.6: Surfaces from one of the learned geometric anisotropy parameters for the
(a) spatially-varying non-stationary GP model (NSGP) and (b) our proposed high-
dimensional manifold non-stationary GP model (HD-NSGP). The parameter surface
from the HD-NSGP model learns the underlying regional geometric anisotropy values
of the simulation function.

In Figure 4.6, we show the trace plots of one of the range parameters from the

MCMC chains of the non-stationary models. While the burn-in period in the HD-

NSGP model (Figure 4.6b) is accomplished after 3 · 104 iterations, the NSGP model

(Figure 4.6a) during that period has not yet explored the entire parameter space and is

not fully mixed. One reason for the slow mixing and convergence of the NSGP model

is that the number of parameters is far more than the HD-NSGP model. Additionally,

the various parameters of the GPs in the NSGP’s scale matrix model escalates the

correlation issues in the parameter estimation procedure. For the two-dimensional

input space, the number of parameters required in the NSGP’s scale matrix model

(as described in Equation 3.19) is |θest| = 19, while for HD-NSGP (as described in

Equation 4.3) its only |θest| = 8 (assuming scalar variance). In higher dimensions,

NSGP is infeasible because of the afore mentioned issues in the parameter estimation.

In comparison, HD-NSGP shows promise for modeling the non-stationary process in

the high-dimensional input space.

The NSGP model in [8] prescribes the Hwang function for its simulation study. In

Table 4.2, we compare the performance of various GP models on the samples from the
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Figure 4.7: Trace plots of one of the geometric anisotropy parameters from the MCMC
chains before the burn-in period for the (a) spatially varying non-stationary GP model
(NSGP) and (b) our proposed high-dimensional manifold non-stationary GP model
(HD-NSGP). The trace plot for the HD-NSGP model shows faster convergence and
better exploration of the parameter space when compared to the NSGP model.

Hwang function for the evaluation metric of MSE and NLPD. The GPs were run on

all of the 50 sets of the training and test datasets, this setup emulates the scenario of

climate-related datasets when the replicates are available. In contrast to the previous

experimental setup of the GP run on individual training and test datasets, here we

have an increased number of samples to train; hence, a more robust estimate of the

large number of non-stationary model parameters can be achieved. In Table 4.2, the

significance level of 0.001 indicates better performance of the predictive model. More-

over, here the summary of the GPs’ performance comparison is similar to that of the

proposed simulation function, i.e., described in Table 4.1. The non-stationary models’

performance is better than the stationary models, and HD-NSGP outperforms NSGP,

especially in the NLPD evaluation metric. For both of the simulation functions, i.e.,

Hwang and proposed, the evaluation metrics from Tables 4.1 and 4.2 suggest that HD-

NSGP has a better predictive model compared to the SGP and NSGP models. In the

next section, we evaluate various GPs on the climate-related datasets that describe

sea-level changes.
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Table 4.2: Evaluation of the Hwang function: the models compared are the stationary
Gaussian process (SGP), spatially varying non-stationary Gaussian process (NSGP),
and our proposed model of a high-dimensional manifold non-stationary Gaussian pro-
cess (HD-NSGP). The evaluation metrics used are the mean square error (MSE) and
negative log predictive density (NLPD).

Simulation Function Eval Metrics SGP NSGP HD-NSGP

Hwang’s function
MSE 0.0240 0.0237 0.0235

NLPD 0.311 0.278 0.271

4.5 Application to Climate Datasets

As stated in the introduction, i.e., Section 4.1, our primary goal for developing the

non-stationary model is to improve the estimation of climate-related processes that

commonly have a distinct regional variability, such as sea-level changes. For the exper-

iments, we used the following three spatial and spatiotemporal datasets that explains

the phenomenon of sea-level changes: glacial isostatic adjustment model output (GIA),6

tide gauge records (TG),7 and satellite altimeter observations (SA).8

4.5.1 Experimental Setup

The geophysics-driven model output of the glacial isostatics adjustment of vertical

land motion (GIA) describes the difference in height between the sea surface and solid

earth, as specified in [140]. The GIA model is one of the most prominent geophysical

signals present in the sea-level change datasets. The spatial GIA dataset we used is the

present-day rate-of-change of relative sea level and crustal uplift prediction in mm/year.

Figure 4.8a shows the dense and regularly spaced spatial field of the GIA dataset that

we have used. To evaluate the GP’s performance on the spatial field, we sampled 25

independent realizations of GIA model output by adding a Gaussian noise of σz = 0.2

6The GIA datasets are available at http://www.psmsl.org/train_and_info/geo_signals/gia/

peltier/

7The TG datasets are available at http://www.psmsl.org/data/obtaining/

8The SA datasets are available at http://hpc.csiro.au/users/326141/Sea_Level_data/gmsl_

files/jb_iby_sry_gtn_giy.nc.gz or https://research.csiro.au/slrwavescoast/sea-level/

measurements-and-data/sea-level-data/

http://www.psmsl.org/train_and_info/geo_signals/gia/peltier/
http://www.psmsl.org/train_and_info/geo_signals/gia/peltier/
http://www.psmsl.org/data/obtaining/
http://hpc.csiro.au/users/326141/Sea_Level_data/gmsl_files/jb_iby_sry_gtn_giy.nc.gz
http://hpc.csiro.au/users/326141/Sea_Level_data/gmsl_files/jb_iby_sry_gtn_giy.nc.gz
https://research.csiro.au/slrwavescoast/sea-level/measurements-and-data/sea-level-data/
https://research.csiro.au/slrwavescoast/sea-level/measurements-and-data/sea-level-data/
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Figure 4.8: Spatial and spatiotemporal climate-related experimental datasets: (a) syn-
thetic dataset (mm/year) of relative sea-level changes from the geophysical model
output of the glacial isostatic adjustment model of vertical land motion, (b) trends
(mm/year) from 1993 to 2012 of the tide gauge observations, (c) trends (mm/year)
from 1993 to 2012 of the satellite altimeter observations, and (d) annual average (mm)
of satellite altimeter observations around North America for the time slices 1993 and
2012.

and masking out the land mass. As seen in Figure 4.8a, the response variable is fairly

homogeneous and smooth; hence, we used 40% of uniformly random samples from each

realization for training and the remainder for testing the GP’s performance.

Another climate-related spatial field where we tested the GPs’ performance was the

rate-of-change in mm/year of the sea-level changes from the monthly tide gauge (TG)

station records. The sparse and irregularly spaced monthly tide gauge records from the

stations across the globe was prepared by [36]. The time frame we used to estimate

the rate-of-change, or trend, was from 1993 to 2012, as there are a maximum number

of consistent station records available during this period. Moreover, after 1993 we have
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consistent satellite altimeter (SA) observations, which we use in Chapter 5 to align

with the TG dataset for the data-fusion experimental setup. The SA dataset measures

the ocean surface height from various remote sensing instruments, as detailed in [37].

Figures 4.8b and 4.8c show the trend surface from the TG and SA dataset, respectively.

Because the tide gauge stations are sparsely spaced, we used 30% of uniformly random

region-wise hold-out samples to evaluate the GPs’ predictive performance and the re-

mainder to train the model. Moreover, we prepared regional training and test sets,

such as North America’s geophysical regions as illustrated in Figure 4.1b, to evaluate

the GPs.

When including the spatially dense datasets of GIA and SA in the experiments,

the input space resolution was subsampled by taking the mean of the values within a

5◦ grid as the response variable. For all of the spatial datasets, the response variable

(trend) was spatially demeaned and normalized so that we could evaluate primarily the

covariance structure across the various datasets.

Finally, we used the spatiotemporal SA dataset to evaluate our proposed GP model

in high dimensions. Figure 4.1d shows the time slice of the dense and regularly spaced

SA dataset from regions around North America. To focus our evaluation on the co-

variance structure of the spatiotemporal dataset, we modeled the forced signals in the

sea-level changes using the following formulation:

y(s, t) = f(s, t)− g(t)− l(s)(t− t0). (4.8)

The above principal formulation has been used in the sea-level community to explain

the forced signals that occur in regional relative sea-level changes (see [26]). Here, the

response variable, y(·, ·), represents the emergence of the forced signals at the geoloca-

tions s and time t, i.e., x = {s, t}; the sea level measurements from the dataset are

f(·, ·); g(·) is the global mean sea level (GMSL); and l(·) is the local mean sea level

trend (LMSL) at each geolocation.9 To compute GMSL, we took the spatial mean

9The term LMSL when referred to the TG dataset is also commonly called as the relative sea-level
changes (RSL). RSL is illustrated in Figure 1.2a.
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at each time slice of the dataset, and for the LMSL computation we used the trend

surface from the aforementioned spatial experimental setup. For our spatiotemporal

experimental setup, we restricted the spatial range around the North American region

and the temporal range from 1993 to 2012. The time series was annually averaged and

demeaned for the SA dataset. The hold-out set of 30% of uniformly random samples

were used to evaluate the GPs’ performance and the remainder to train the model.

We report the performance of various GP models with respect to two evaluation

metrics, i.e., the mean squared error (MSE) and negative log predictive density (NLPD).

4.5.2 Results

In Table 4.3, we compare the various GP models for the aforementioned spatial and

spatiotemporal climate-related experimental setup. From Tables 4.1, 4.2, and 4.3, we

see a consistent result where the non-stationary models performs better than the sta-

tionary models, and our proposed non-stationary model (HD-NSGP) improves upon

the NSGP model.

For the GIA dataset, the difference between the non-stationary models’ evaluation

metrics is small; this could be because of the homogenous and dense spatial field. In

other words, there is little variation within the regions, and the boundaries are smooth

(as seen from Figure 4.8a). In Figure 4.9, we illustrate the mean posteriors of the scale

matrix parameter at the geospatial boundaries around the regions of the Barents sea

from the GIA dataset. The scale matrix parameter in the spatial dataset is represented

using an ellipse, and the relative size of the ellipses are scaled for illustration. While

the scale matrix parameter from the SGP model (illustrated in Figure 4.9b) has the

same shape for all of the input space locations, NSGP and HD-NSGP models show

the spatially-varying shape of the scale matrix parameter. Moreover, the shape of

the ellipses from the NSGP model, at different regions, has less variability, or is over-

smoothed, compared to that of the HD-NSGP model. This over-smoothing in the NSGP

model could potentially be the reason for its slight underperformance in Table 4.3 when

compared to the HD-NSGP model. For all of the non-stationary models, the rotation

parameter of the scale matrix shows an appropriate fit to the underlying field. This
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Table 4.3: Evaluation of various GPs for the spatial and spatiotemporal climate-related
datasets at global and regional extents. The spatial datasets used are the Glacial-
isostatic Adjustment (GIA) and tide gauge records (TG), and the results are in the units
of mm/year. The spatiotemporal dataset used is the satellite altimeter observations
(SA), and the results are in the units of mm. The mean of posteriors from the GP
models of SGP, NSGP, and HD-NSGP, are compared using the evaluation metrics of
MSE and NLPD.

Dimensions Datasets
SGP NSGP HD-NSGP

MSE NLPD MSE NLPD MSE NLPD

Spatial
(m = 2)

GIA
(Global)

0.58 3.08 0.56 2.00 0.54 1.94

GIA
(Barents Sea)

1.57 9.23 1.24 7.30 1.03 6.90

TG
(Global)

0.85 2.81 0.75 2.80 0.71 2.78

TG
(N.America)

1.05 3.0 0.54 2.62 0.50 2.58

Spatiotemporal
(m = 3)

SA
(N.America)

1.38 4.29 1.18 4.25 1.10 4.15

fit of the ellipse is observed from its minor axis being approximately rotated along the

direction of the most prominent gradient at a particular location in the field.

Figure 4.10 illustrates the estimates of the scale matrix parameters for the spa-

tiotemporal SA dataset at a particular instance, i.e., at t = 2004. Here, the shape of

the ellipses corresponds to the spatial scales, while the colors represent the temporal

scale. Moreover, the figure emphasizes the difference in the estimates of the spatiotem-

porally constant (Figure 4.10a) and varying (Figure 4.10b) scale matrix parameters

from SGP and HD-NGP models, respectively. This difference in the stationary and

non-stationary covariance structure in high-dimension improves the predictive model,

as seen from Table 4.3.

Similar to the spatial GIA dataset, the spatiotemporal SA dataset is dense, regu-

larly spaced, and spatially subsampled for our prototypical climate-related experimental

setup. Furthermore, the temporal scale is annually averaged, and the temporal span is

short, i.e., only 19 years. This experimental setup could be one of the reasons that we
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Figure 4.9: A regional analysis of the glacial-isostatic adjustment (GIA) dataset.
(a) GIA dataset around the Barents sea region. The mean posteriors of the scale
matrix, or geometric anisotropy, parameters from the (b) stationary GP model (SGP),
(c) spatially varying non-stationary GP model (NSGP), and (d) our proposed high-
dimensional manifold non-stationary GP model (HD-NSGP). Compared to the SGP
model, the NSGP and HD-NSGP models shows a better conformity of the scale matrix
parameter to the underlying spatial field.

were unable to find a distinct spatiotemporal regional variation from our non-stationary

model fit. In other words, we found that the estimated scale matrix shapes were over-

all similar from both the NSGP and HD-NSGP models. Even with a slight difference

in the estimates of the spatiotemporally-varying scale matrix parameters between the

NSGP and HD-NSGP model, we see an improvement in the predictive performance

from Table 4.3. This intuitively exemplifies that the spatially-varying non-stationary

GP models predictive performance is sensitive to the estimates of the scale matrix

parameter for complex climate-related processes.

A more distinct regional variation is seen in the TG dataset when compared to the
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Figure 4.10: An estimate of the scale matrix parameter, or geometric anisotropy, for
the spatiotemporal satellite altimeter dataset. The mean posteriors of the scale ma-
trix parameter shown here are from the (a) stationary GP model (SGP) and (b) our
proposed high-dimensional manifold non-stationary GP model (HD-NSGP).

GIA and SA datasets. For example, Figure 4.11a shows color-coded clusters of stations

around North Americas that are advised by the geophysics of the regions. Moreover,

the estimates, or the mean posteriors, of the scale matrix parameter from our proposed

model (HD-NSGP), NSGP model, and SGP model are represented by the ellipses in

Figures 4.11a, b, and c, respectively. These estimates of ellipses from various GP models

show a noticeable difference in its patterns.

While the NSGP model estimates the scale matrix parameters that are spatially

varying, it fails to capture the underlying regional variability of the coastal stations.

One of the potential reasons that the NSGP model gives a large variability of the scale

matrix estimates across the nearby stations is because there are insufficient spatial

neighbors in the input space. Similar behavior of the scale matrix estimates from the

NSGP model was seen in our simulation study (see Figure 4.6). On the other hand,

our proposed model (HD-NSGP) aligns with the orientation of the nearby station data

at the coastline. Also, the clusters represented by the boxes in Figure 4.11b conform

with the geophysical clusters. Moreover, Table 4.3 shows improved performance of HD-

NSGP model for North America’s TG test dataset. Hence, our proposed HD-NSGP

model is particularly helpful in cases where there is distinct regional variability in the

underlying physical processes.
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Figure 4.11: A regional analysis of the tide gauge station records (TG) around North
America. (a) Spatial clusters of stations (i.e., same color) advised by the geophysics of
the region. The mean posteriors of the scale matrix, or geometric anisotropy, estimated
from (b) our proposed high-dimensional manifold non-stationary Gaussian process (HD-
NSGP) model, (c) spatially-varying non-stationary (NSGP) model, and (d) stationary
(SGP) model. The clusters of the estimated scale matrix parameters from HD-NSGP,
as shown in the blue boxes in (b), conforms with the geophysical clusters, as shown in
(a).

4.6 Discussion

In this chapter, we proposed a high-dimensional manifold non-stationary covariance

function (HD-NSGP) and its parameter estimation scheme for the GP model. Further-

more, in our experiments, we showed that HD-NSGP outperformed both the previously

developed non-stationary GP in [8] (NSGP) and the stationary GP (SGP). The datasets

considered in our experiments were from the simulation study, climate model output

(i.e., GIA model), remote sensing dataset (i.e., satellite altimeter (SA)), and station

data (i.e., tide gauge (TG) stations).
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For the TG dataset, we showed that HD-NSGP successfully modeled the covariance

structure of the underlying distinct regional variability around North America. For

the smooth, dense, and regularly spaced datasets of GIA and SA, the scale matrix

process of HD-NSGP and NSGP showed similar outcomes. Resembling the TG dataset,

the climate-variable of precipitation also exhibits distinct regional characteristics in its

spatial process. For example, in Figure 1.1 we depict the trend surface of precipitation

around North America and its potential regional component. Future work can focus on

exploring HD-NSGP’s applicability to various climate-related processes.

A crucial aspect of developing a non-stationary model for the complex climate-

related processes is the simulation study. In Section 4.4, we proposed a flexible frame-

work for testing a non-stationary model, and, further showed the applicability of our

proposed model. A straightforward extension of our simulation function, in Equa-

tion 4.7, could include multiple regional GPs with differing smoothness parameters in

the covariance and generalized logistic functions.

For the methodological development in HD-NSGP, we modeled the spatially-varying

scale matrix, or geometric anisotropy, on a Riemannian manifold of SPD matrices. This

manifold construction provided us with a valid covariance function and the essential

smoothness properties of its associated GP. In comparison, NSGP modeled each element

of the eigendecomposed scale matrix as a separate GP, resulting in various issues in the

NSGP model, as described in Section 3.2.3. For example, the scale matrix parameters

in NSGP is |θΣ| = 16 (see Equation 3.19), while in HD-NSGP it is only |θΣ| = 8 (see

Equation 4.3). Furthermore, the computational complexity for estimating the scale

matrix in NSGP is O(m2 · n3). In comparison, for the simplified HD-NSGP model it

is O(m6), and for the full model it is O(|r| ·m6) (as described in Equation 4.2). Note,

in many of the spatial problems, including the applications described in this chapter,

m << n and |r| < n. Hence, by reducing the number of parameters in HD-NSGP, we

render it scalable and suitable for a high-dimensional input or covariate space.

Moreover, we sample the scale matrix using the intrinsic statistics on a manifold,

leading to its uniqueness. In other words, each element of the scale matrix is repre-

sented as a coordinate system with its canonical intrinsic metric. Hence, HD-NSGP
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does not encounter the identifiability issues in its scale matrix estimation, which is

inherent in the NSGP model. In addition, HD-NSGP’s scale matrix model is flexible

to vary its smoothness within and across the regions, as illustrated in Section 4.4.2.

The spatially-varying smoothness of the scale matrix process is a result of computing

the neighborhood structure of the scale matrix on a smooth manifold, as described in

Section 4.3.2. The neighborhood structure of the scale matrix can be further explored

using recent advances in the learning techniques on a Riemmanian manifold [141].

In our simulation study, we saw that the NSGP’s scale matrix process tends towards

an over smooth estimate. One possible extension to overcoming this smoothness issue

could include using the Matérn covariance function instead of the squared exponential

function used in the NSGP model of [8]. Also, in theory, one could increase the depth

of the NSGP model hierarchy by using spatially-varying covariance functions for the

scale matrix model’s GPs. However, in practice, we found that both of the strategies

mentioned above for incorporating varying smoothness in the NSGP scale matrix model

increased its existing parameter estimation issues, such as identifiability, convergence,

and mixing.

In Figure 4.7, we illustrated the mixing and convergence improvement of HD-NSGP

when compared to NSGP. The mixing and convergence issues of NSGP is described

in detail in Section 3.2.3. One of the reasons MCMC samples mix well for HD-NSGP

is because we jointly sample the scale matrix. Similarly, MCMC converges faster in

HD-NSGP when compared to NSGP for reasons including a reduced number of matrix

inversions, hyperparameter space, and parameter space for the scale matrix process, as

described in Section 4.3.2.

Albeit, our goal for developing the parameter estimation scheme was to primarily

show HD-NSGP’s applicability to climate-related processes, such as sea-level change.

Hence, we tailored the two intractable, or problematic, parameters informed by the

climate-related processes, i.e., the smoothness parameter of the Matérn function (ν)

and the number of regions, or clusters, (|r|). For example, it is well known in spatial

statistics (see [1]) that many climate-related processes have the smoothness parameter

that approximately lies in the range of ν = {0.5, 1, . . . , 2.5}. Similarly, the range of
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the number of clusters were approximately bounded by the geophysical boundaries of

the coastline or by visual inspection. For example, in North America’s TG dataset

the range of the clusters were |r| = {2, . . . , 10}, and informed by the coastline. While

in the SA dataset the range of the clusters, |r| = {n/2, . . . , n}, was chosen by visual

inspection. A potential extension in HD-NSGP’s general applicability to other stochas-

tic processes where the underlying process is non-stationary could benefit from a more

robust estimation procedure. One such direction is to develop a local-likelihood based

estimation procedure similar to [113].

In addition, there are two areas of our covariance model that can be further im-

proved. First, is the intrinsic statistics of the SPD matrices, and second is the Matérn

covariance function of the GP. The aspects of the manifold that could provide insights

into the scale matrix model development are the choice of metric, connections, and the

vector space. We elaborate on potential improvements of the manifold representation

in Chapter 7, as its the common theme in our approach to the geostatistical problems

of Chapters 4, 5, and 6.

To improve the spatially-varying non-stationary covariance function, we have shown

how the high-dimensional manifold representation of one of the covariance function’s

parameters, i.e., the geometric anisotropy, can be modeled. Other parameters in the

covariance function, such as the signal variance and noise variance, could similarly be

modeled as the spatially-varying anisotropy on the manifold of SPD matrices. More-

over, the spatially-varying smoothness parameter in the Matérn, as described in Equa-

tion 3.14 and derived in [18], can be implemented in conjunction with our HD-NSGP

model.

Another aspect of the spatial statistics that is actively being developed in recent

years is its application to large datasets. Methods that have shown promise for this task

include the Lattice Kriging [96], Nearest Neighbor GP [97], and stochastic PDE [118].

In general, the aforementioned methods for large datasets leverage the sparse repre-

sentation of the precision matrix instead of modeling for the covariance matrix. An

interesting future development of our approach could involve the manifold representa-

tion to solve large, high-dimensional, non-stationary datasets that are commonly found
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in climate-related problems. On the other hand, there are many climate-related datasets

that still suffer from a small sample size, such as TG dataset. In the next chapter, we

provide extensions to our proposed non-stationary model for improving inference from

small datasets using a data-fusion technique.
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Chapter 5

Data-Fusion Geostatistical Model

Data, data, data, so many sources to consider, yet so few . . . can we fuse them all to

understand the phenomena better?

5.1 Introduction

Any predictive model is only as good as the estimated parameters that represent the

data. Many climate applications, including sea-level change predictions, lack the avail-

ability of recorded measurements for robustly estimating the parameter. For example,

Figure 5.1a shows the lack of temporal range data available in the satellite altimeter

(SA) dataset. On the other hand, Figure 5.1c shows the spatially dense availability of

spatiotemporal SA dataset. In contrast, Figure 5.1a shows the temporally long range of

data available at one of the tide gauge (TG) sites, and Figure 5.1c shows the spatially

sparse availability of spatiotemporal TG dataset.

In Section 1.3, we briefly described the problem of inference from multiple sources of

datasets. In climate-related applications, such as the time series of global mean sea-level

change, [27] proposed a standard principal component analysis (PCA) based method

for inference from the TG and SA datasets. Various other regional and climate-variable

specific inference methods from multiple sources that primarily rely on the geophysics

can be found in [20].

In the climate and statistics literature, a systematic data-driven approach for multi-

source inference is still ongoing research. Furthermore, to the best of our knowledge,

we have not found a non-stationary model that also incorporates multiple sources of

datasets for modeling climate-related variables, such as sea-level changes.

Hence, in this chapter, we propose an extension to our high-dimensional manifold
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Figure 5.1: Spatiotemporal range in the various sources of sea-level datasets. (a) An
example of the temporal range at the oldest tide-gauge site that is located in southern
France. An example of the available spatial measurements around the globe from
(b) tide-gauge sites and (c) satellite-altimeter dataset. Note, the satellite-altimeter
dataset is spatially dense, and the tide-gauge dataset is temporally long ranged.

non-stationary Gaussian process (HD-NSGP) model of Chapter 4, which incorporates

multiple sources of datasets for improving inference. The core idea is to fuse the

estimates of the parameters, such as the spatially-varying scale matrices, from multiple

sources of datasets using the manifold construction of Chapter 2. We call this framework

a data-fused high-dimensional manifold non-stationary Gaussian process (DF-NSGP)

and describe this model in the next section.

5.2 Data-Fused High-dimensional Manifold Model

In Figure 5.2, we depict the DF-NSGP model, where the spatially-varying parameter

of the geometric anisotropy, or scale matrix, from the two sources of sea-level mea-

surements are estimated on a manifold, M, of SPD matrices. The proposed corre-

lation function, dissimilarity function, and spatially-varying geometric anisotropy for
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Figure 5.2: The proposed data-fusion framework: (a) tide-gauge sites (b) satellite-
altimeter dataset, and (c) data fusion of the geometric anisotropy on a manifold.

DF-NSGP is constructed using the following equations:

ρDFNS(xi,xj) = 2
m
2 |Σ̂i|

1
4 |Σ̂j |

1
4 | Σ̂i+Σ̂j

2 |
− 1

2
ρS(ν, qDFNSij ), (5.1a)

qDFNSij = (xi − xj)T
( Σ̂i + Σ̂j

2

)−1
(xi − xj), (5.1b)

Σ̂i ∼ f(Σ̂TG
r(i), Σ̂SA

r(i)), Σ̂j ∼ f(Σ̂TG
r(j), Σ̂SA

r(j)), (5.1c)

Σ̂TG
r(i) ∼ N (Σ̄TG,ΛTG), Σ̂SA

r(i) ∼ N (Σ̄SA,ΛSA). (5.1d)

Note, Equations 5.1a, 5.1b, and 5.1d are similar to those of the HD-NSGP model,

as given in Equation 4.1. The only difference is the addition of Equation 5.1c, which

samples Σ̂i using the estimation function, f(·), and the spatially-varying scale matrices

from the two sources of datasets. The estimates of the scale matrices from the two

sources of datasets are denoted as ΣTG and ΣSA, referring to the tide gauge and satellite

altimeter datasets, respectively. In general, we denote the primary source of the scale

matrix estimate as Σ and the surrogate source as ΣSurr.

A straightforward estimation, or regression function, Σ̂i = f(ΣTG
r(i),Σ

SA
r(i)), can be
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represented as follows:

Σ̂i = φ1 � ΣTG
r(i) ⊕ φ2 � ΣSA

r(i) ⊕ φ3, (5.2)

where the hyperparameters {φi} = {φ1,φ2,φ3} transform the initial estimates of the

scale matrix, {ΣTG
r(i),Σ

SA
r(i)}, which are estimated from the individual sources of datasets.

For a matrix-valued hyperparameter, φi ∈ GL(m,R), the tensor operations, {�, ⊕},

on the tangent space of a manifold, TΣM, endowed with the affine-invariant metric can

be defined as follows:

φi � Σ = expΣ(logΣ(φi) · Σ),

Σ⊕ Σ′ = expΣ(Σ + logΣ(Σ′)),

(5.3)

where the operations { · ,+} are the usual matrix multiplication and addition operation

on gl(m,R). The definition of the exponential and logarithm maps are described in

Section 2.2.2. Furthermore, the above formulation can be computed using the spectral

decomposition of the SPD matrices.

The above operation of {⊕} uses the parallel transport construction because Σ and

Σ′ can possibly lie on separate tangent spaces, i.e., TΣM and TΣ′M, respectively. How-

ever, we still assume that there exists a curve that passes through the two SPD matrices

and that they lie on a locally affine diffeomorphic neighborhood. See Appendix A.3 for

the properties of the geodesic distance function on a statistical manifold. When the

SPD matrices are assumed to lie on the same tangent space, the usual addition opera-

tion, {+}, for matrices can be applied. Given that φi ·Σ /∈ S+(m,R), the usual matrix

multiplication operation, { · }, cannot be used. Alternatively, a computationally favor-

able logarithmic multiplication operation exists using the bi-invariant metric structure

on a manifold,1 as given in [10], and is defined as follows:

φi � Σ = exp(log(φi) + log(Σ)) when φi ∈ GL(m,R) and

φi � Σ = exp(φi log(Σ)) when φi ∈ GL(1,R).

(5.4)

1The logarithmic bi-invariant metric structure on a Riemannian manifold is also called the Log-
Euclidean metric structure.
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For simplicity, in our experiments we used scalar hyperparameter values of φi ∈

GL(1,R). However, a computationally involved and favorable choice would be to either

implement a matrix-valued hyperparameter, φi ∈ GL(m,R), or a spatially-varying

hyperparameter, φi(x). Alternatively, instead of the regression function in Equa-

tion 5.2, we can assume that ΣTG and ΣSA are sampled from the same distribution on,

N (Σ̄,Λ), the SPD manifold. In other words, the data-fused scale matrix is sampled from

Σ̂i ∼ N (Σ̄,Λ | ΣTG
r(i),Σ

SA
r(i)), and the hyperparameters are {φ1 = 0.5, φ2 = 0.5, φ3 = 0}.

For our experiments, we used this formulation of the data-fused scale matrix since it

simplifies the computational complexity in the sampling procedure. Another alternative

for estimating the hyperparameters, {φi}, is to use the geophysical relation between the

different sources of measurements. For example, in our experiments, we can separately

learn the geophysics-driven geometric anisotropy relationship between the tide gauge

records and the satellite altimeter measurements, and then fix the hyperparamter val-

ues in Equation 5.2. Furthermore, below we state the relevant theorems of a data-fused

non-stationary covariance function and its smoothness properties.

Theorem 3. The spatially-varying non-stationary covariance function, as constructed

from Equation 5.1, is a valid non-stationary covariance function.

Proof. The proof for the above statement follows the same recipe as described in

Theorem 1. That is, by construction, on a smooth manifold with the affine-invariant

metric we are guaranteed an outcome of the scale matrix estimation procedure to be an

unique SPD matrix, i.e., Σ̂i ∈ S+(m,R). Hence, our prescription of the non-stationary

covariance function, as constructed from Equation 5.1, is valid.

Theorem 4. A non-stationary Gaussian process, Z(·), is Mth-order sample path and

mean square differentiable for the non-stationary correlation function, ρDFNS(·, ·), as

given in Equation 5.1, if the associated stationary correlation function, ρS(·), is Mth-

order sample path and mean square differentiable.

Proof. The proof of the above statement follows the same recipe of Theorem 2. The

data-fused scale matrix, Σ̂i, is sampled from a distribution that lies on an infinitely
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differentiable and complete Riemannian metric space. Additionally, we assume without

loss of generality that the hyperparameters that provide the relation between the two

sources of datasets, i.e., {φi(x)}, are either constant or infinitely differentiable. Hence,

by construction, the smoothness properties of the sample path and mean square dif-

ferentiability for the non-stationary Gaussian process only depends on the associated,

chosen stationary correlation function.

Proposal Scheme 4: For the spatially-varying geometric anisotropy, or scale matrix
parameters, {Σ̂i}, of DF-NSGP model.

1: Initialize the samples, θΣ = {|r|, Σ̄,Λ}, using Proposal Scheme 2.

2: Use the pre-estimated mean posterior samples of the parameters from the sur-

rogate source of the dataset, i.e., {ΣSurr
r(i) }, using the HD-NSGP model. The

nearest neighbor region in the surrogate source can be established by using

nearest neighbor geolocation in the two sources of datasets, i.e., xj
Surr :=

argmin({dgcd(xi,xjSurr)}j=1,...,nSurr).

3: If using Equation 5.3, sample φi ∼ N (Σ̄φ,Λφ) for φi ∈ S+(m,R) using Proposal

Scheme 2 and Steps 2 to 5.

4: Else, sample Σ̂i ∼ N (Σ̄,Λ|Σr(i),Σ
Surr
r(i) ) such that tr(Λ) ≤ τ2, where τ is either a

constant threshold or is sampled from τ ∼ N (0, 1).

For estimating the HD-NSGP parameters, we used a similar MCMC scheme, as

described in Section 4.3.2. The only difference is in the estimation of the geometric

anisotropy, or scale matrix. Instead of using Proposal Scheme 3 for HD-NSGP, we used

Proposal Scheme 4 for DF-NSGP. For simplicity, we used the pre-estimated mean pos-

teriors of the scale matrix parameter, ΣSurr, from the surrogate source. The threshold

in Step 4 of Scheme 4 was used to restrict the dispersion in the scale matrix parameters

from the two sources of datasets. Additionally, this threshold also acted to preserve

the assumption of using data fusion. In other words, we used the data-fused sampler

only if the associated region of the surrogate scale matrix parameter was in the local

vicinity on the manifold. Interesting future work would be to simultaneously sample
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Figure 5.3: Data-fusion experimental setup: (a) spatial glacial isostatic adjustment of
vertical land motion (GIA-VLM) in mm/year, (b) spatial glacial isostatic adjustment
of relative sea level (GIA-RSL) in mm/year (used to fuse with GIA-VLM dataset),
(c) spatiotemporal satellite altimeter (SA) dataset around North America in mm, and
(d) spatiotemporal tide gauge (TG) dataset around North America in mm (used to fuse
with SA dataset). Additionally, the spatial TG dataset, as shown in Figure 5.1b, and
the spatial SA dataset, as shown in Figure 5.1c, were also used in the experiments.

the parameters from all sources of the datasets for the DF-NSGP, or to use multiple

nearest neighbor regions of the surrogate sources.

5.3 Application to Climate Datasets

The experimental setup for the climate-related application of sea-level changes was

similar to Section 4.5.1. However, additional data setup for the surrogate sources were

also used. For the synthetic dataset of GIA-VLM, the surrogate source of the glacial

isostatic adjustment of relative sea level (GIA-SL) was used, as shown in Figure 5.3 a
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Table 5.1: Evaluation of various GP models for the spatial and spatiotemporal climate-
related datasets at global and regional extents. The spatial datasets used are the glacial-
isostatic adjustment (GIA) and tide gauge records (TG), and the results are in the units
of mm/year. The spatiotemporal dataset used is the satellite altimeter observations
(SA), and the results are in the units of mm. The mean of posteriors from the GP
models of SGP (using stationary covariance), NSGP (using non-stationary covariance),
HD-NSGP (using high-dimensional manifold non-stationary covariance), and DF-NSGP
(using data-fused high-dimensional manifold non-stationary) are compared using the
evaluation metrics of MSE and NLPD. The column with the bold values, i.e., DF-
NSGP, shows the best evaluation metric score among the various GP models.

Dim. Datasets
SGP NSGP HD-NSGP DF-NSGP

MSE NLPD MSE NLPD MSE NLPD MSE NLPD

Spatial
(m = 2)

GIA
(Global)

0.58 3.08 0.56 2.00 0.54 1.94 0.52 1.91

GIA
(Barents Sea)

1.57 9.23 1.24 7.30 1.03 6.90 0.92 5.70

TG
(Global)

0.85 2.81 0.75 2.80 0.71 2.78 0.66 2.75

TG
(N. America)

1.05 3.0 0.54 2.62 0.50 2.58 0.46 2.55

TG
(S. Africa)

2.10 2.95 2.73 3.18 2.69 3.17 1.82 2.88

Spatio-
temporal
(m = 3)

SA
(N.America)

1.38 4.29 1.18 4.25 1.10 4.15 1.08 4.11

and b. For the spatial TG dataset, the surrogate source of spatial SA was used, as

shown in Figure 5.1b. Finally, for the spatiotemporal dataset of TG, the surrogate

source of spatiotemporal SA was used, as shown in Figure 5.3 c and d.

In Table 5.1, we compare various GP models, including SGP, NSGP, HD-NSGP, and

DF-NSGP, for the aforementioned spatial and spatiotemporal datasets. In this table,

we see that the proposed DF-NSGP model, as described in this chapter, outperforms

other GP models including the HD-NSGP model, as described in the previous chapter.

One reason for the DF-NSGP model to outperform the HD-NSGP model is that the

climate-related measurements around certain regions are spatially sparse. For example,

the spatially sparse and irregularly spaced TG sites around South Africa and North
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America show a higher order of improvement in Table 5.1 for the DF-NSGP model

compared to the other datasets. Hence, using multiple sources of related processes for

modeling can particularly be useful when the measurements are insufficient.

5.4 Discussions

It is well known that estimating the parameters of the non-stationary process requires

a lot more samples of the measurements than the stationary process. Furthermore,

many of the climate-related processes, including sea-level changes, temperature, and

precipitation, are known to exhibit non-stationarity and insufficient measurements. To

improve the estimates of the non-stationary process from an existing insufficient sample

of measurements, in this chapter, we proposed a data-fused high-dimensional manifold

non-stationary covariance function (DF-NSGP) and its parameter estimation scheme for

the non-stationary GP model. The primary focus of the DF-NSGP model, as presented

in this chapter, was to demonstrate the improved estimates of the spatially-varying ge-

ometric anisotropy, or scale matrix parameter, for inference of a process. However, the

DF-NSGP model can be extended to estimate other parameters of the process, such

as the signal and noise variances. In our experiments for climate-related processes,

such as sea-level changes, we showed that the DF-NSGP model, when using an ad-

ditional source of information, outperformed our previously proposed non-stationary

model (HD-NSGP), which used a single source of measurement (in Chapter 4). The

results especially improved for the regions where there were insufficient, irregular, and

spatially sparse records of the climate variable, such as South Africa and North America.

Alternatively, a more traditional approach to improve inference is to use covariates,

or features, in the model from related processes, or climate variables. See [107] for ex-

amples of a non-stationary GP model with the covariate information. However, adding

covariates could potentially increase the number of parameters and the computational

complexity of the GP model. On the other hand, by using DF-NSGP we can inde-

pendently and parallelly estimate the parameters of the multiple sources of datasets.

Thereby, we render an unchanged size in the number of parameters and computational

complexity of the GP model.
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In our methodology for data fusion, we assumed that the SPD matrices from two

sources of datasets are in the local vicinity on a manifold. Further improvement in the

data-fusion model could relax this assumption and provide a scheme to compute the

scale matrix when the SPD matrices from the multiple sources are far apart. One such

potential scheme could be to use the Schild’s ladder algorithm (see [84]) to compute the

distances, and, thereby, its intrinsic statistics to estimate the scale matrix parameters.

In our experimental pilot setup, we considered the climate model output (i.e., GIA-

LVM and GIA-RSL), remote sensing dataset (i.e., satellite altimeter measurements),

and station data (i.e., tide gauge stations). Given the promising results using the DF-

NSGP model from only two sources of datasets, future work could include multiple

related sources of datasets to improve our understanding of particular climate phenom-

ena.
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Chapter 6

Intermodel Comparison and Emulation Geostatistical

Model

Each group has something to say, something about the future of our Earth. I am not

interested in a group or its words, but, in the theory of bringing them all together to see

the future of our Earth clearly . . . can we?

6.1 Introduction

Various groups worldwide provide us with their Earth system models (ESM) that de-

scribe the Earth’s physical, biological, and chemical processes. These ESMs typically

use solutions to the differential equations of thermo-fluid dynamics to realize space and

time dependent values of various physical processes. One of the primary goals of ESMs

is to simulate future Earth scenarios. For example, Figure 6.2 shows the future sce-

nario of precipitation changes across North America from three different groups, i.e.,

Max Planck Institute in Germany, Meteorological Research Institute in Japan, and

Community Earth System Model in the USA. Some of these groups show us a drasti-

cally different view of the future climate change. On the other hand, due to inherent

dependencies in the legacy codes and data of ESMs, there also exists similar patterns

from ESMs output. For example, in Figure 6.2 one can visually see the similarities in

the patterns of precipitation changes around North America from two of the ensemble

members, i.e., NorESM1-M and NorESM1-ME. For the known intermodel dependencies

that are based on legacy code and data sharing, see the genealogy map in [21].

An ongoing project of the Coupled Model Inter-comparison Project (CMIP [49])

coordinates efforts between various Earth system modeling groups to create a database

of multi-model ensembles of climate simulations. For our experimental setup, we use
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Figure 6.1: Projections (2090) of percent change in precipitation per degree of change
in the global mean temperature for North America from the Climate Model Inter-
comparison Project-5 (CMIP5) ensemble. Shown here are projections from the (a) Max
Planck Institute (MPI, Germany), (b) Meteorological Research Institute (MRI, Japan),
and (c) Community Earth System Model (CCSM4, USA).

the ESM outputs that were assembled for the fifth phase of this project (CMIP5).

In Section 1.3, we have described several challenges in the CMIP5 ensemble. Fur-

thermore, in this section we also describe our motivation for developing the intermodel

comparison and emulation geostatistical models on a Riemannian manifold of the ESM’s

covariance structure. A framework to compare models is called an intermodel compar-

ison model. Similarly, a framework to statistically simulate Earth’s future realizations

is called an emulator.

An overview of various methodologies and their limitations for capturing the vari-

ability among climate model outputs is given in [24]. For example, some of the climate

models share common physical representation and numerical methods, and, thereby,

cannot be considered as independent simulations. Additionally, the dependencies in

climate models reduce the spread of future climate projections. A Bayesian hierarchical

framework has been suggested by [51, 52, 53, 54] to address the intermodel dependency

issues. However, the proposed Bayesian framework faces difficulties in robustly model-

ing the inter-dependencies because the posterior distributions are excessively sensitive

to prior assumptions. Additional approaches for a specific climate variable based on

the geophysics of specific regions have also been compiled in [20]. However, our goal is

to provide a general non-parametric framework that has the potential to be applied to

any or all of the Earth system components.

A recent work by [64] shares similar methodological goals as ours in that the authors

address issues of model dependencies and sampling in a non-parametric framework.
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Figure 6.2: An example of the sample dependence in the CMIP-5 ensemble. Projec-
tions (2090) of percent change in precipitation per degree of change in the global mean
temperature for North America from the Norwegian Climate Center’s Earth System
Model (NorESM). The core model from NorESM is named (a) NorESM1-M. Its vari-
ation, which includes biogeochemical cycling, is named (b) NorESM1-ME. Note, the
spatial patterns in (a) and (b) are visually similar.

The authors use a standard Euclidean metric on a low-dimensional space by fixing the

modes of variance within the available ensemble. Thus, the authors limit the amount

of variability information that is present in the climate model outputs. While this

method would be a sufficient distance measure for some climate variables, such as

climate sensitivity projections, the method lacks all of the variability information that

could produce unviable samples for other climate variables, such as precipitation change.

Hence, our goal is to provide a framework where we can compare various ESM

outputs in their intrinsic high-dimensional (m ≥ 50) space of covariance structure, and,

thereby, emulate the future Earth scenario.

6.2 High-dimensional Manifold Intermodel-Comparison Model

The intuition behind our proposed intermodel comparison model is that the ensemble of

a well-fitted covariance matrix from each climate model output has sufficient informa-

tion to provide us with a distance measure. Using this distance measure, we can viably

compare ESM’s outputs. As the covariance matrices of the ensemble members lie on the

space of a SPD manifold, we can employ the distance function of the geodesic curve on

the manifold, as described in Section 2.2.3. In Figure 6.3, we depict our methodology,

and, in Scheme 5, we present our model for the intermodel comparison of climate model
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Figure 6.3: A proposed intermodel comparison model using the high-dimensional man-
ifold representation of covariance matrices. Climate model outputs from individual
modeling teams of the CMIP5 ensemble, such as CCSM4, MPI, and MRI, are used to
parameterize each of the covariance matrices.

outputs.

Scheme 5: Finding the distance function of climate model outputs.

1: Choose an appropriate covariance function for each of the climate variables and its

associated climate model output. Then, the covariance matrix is given as follows:

Ki(θi) = σ2
ZH(ΣZ) + σ2

Y I, where i = 1 . . . n is the number of ensemble members,

and m = dim(K) is the number of geolocations for which the ESM provides a

response, or output. To retain the SPD manifold notation, let Σi(θi) = Ki(θi).

2: Estimate the parameters of the covariance function for each ensemble member, i.e.,

θi = {σY , σZ ,ΣZ}, using MLE, i.e., θi = argmaxθL(θ, zi(x1), . . . , zi(xm)). Here,

zi is the multivariate response from the ESM output, and m is the number of

geolocations.

3: Compute Σi by fitting the estimated parameters to the chosen covariance function.

4: Compute the geodesic curve on a manifold of covariance structure, i.e.,

D2(Σ1,Σ2) = 1
2tr(log2(Σ

− 1
2

1 Σ2Σ
− 1

2
1 )), where Σi ∈ S+(m,R). For the computational

details of the geodesic curve, see 2.2.3.

For simplicity, we used the stationary anisotropic Matérn covariance function in our
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experiments. However, the model can be easily extended to the previously proposed

covariance functions of HD-NSGP and DF-NSGP, as presented in Chapters 4 and 5,

respectively. The geostatistical parameters of the covariance function, i.e., {sill, range,

and nugget}, can be estimated using maximum likelihood estimation (MLE). Again,

for simplicity, we fix the smoothness parameter of the Matérn function to ν = 1. The

previously described MCMC scheme can be plugged in to get the posterior estimates

of the geostatistical parameters when using the HD-NSGP or DF-NSGP covariance

function.

We compare the validity of our distance function with the genealogy map of [21],

and, further, show a contrasting result when compared with the multi-dimensional

scaled Euclidean metric framework of [64]. The geodesic distance function also provides

us with a metric for the proposed emulator model, as described in the next section.

6.3 High-dimensional Manifold Emulation Model

The core idea of our high-dimensional manifold emulator is to sample the patterns

(i.e., covariance structure) of realizations from a distribution, rather than the standard

sampling scheme of sampling individual points from the distribution. The standard

multivariate sampling scheme (MVN) is described in Section 3.3. To show the appli-

cability of our idea, in this thesis we resort to a multivariate normal distribution for

the high-dimensional manifold emulator (HD-MVN). By sampling the entire covariance

matrix, {Σ}, from the underlying distribution, which is estimated from existing ensem-

ble members’ realizations, we can focus on providing patterns of future climate change.

However, the existing ensemble members, as described in Section 6.1, have inherent

dependencies. To reduce the bias from the estimates of the existing ensemble mem-

bers, we employ a weighted sample scheme. Below we describe our proposed emulator
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(HD-MVN) for a new sample, z̃, that represents the future climate projection:

Z ∼ MVN(µ,Σ(θ)), z̃ = µ+ Σ
1
2 ε, (6.1a)

µ̂ =
N∑
j=1

nj∑
k=1

1

Nnj
zj,k, ε ∼ N (0, I), (6.1b)

Σ(θ) ∼ N (Σ̄,Λ|Σ1(θ1), . . . ,Σn(θn)), Σ̂ = Σ̄ + Λ
1
2 ε. (6.1c)

For simplicity, we assume that the climate model outputs are from the multivariate

normal distribution, i.e., Z ∼ MVN(µ,Σ(θ)). The ensemble mean, µ̂, is estimated as

a weighted average of the ESM’s output, {z1(x), . . . , zn(x)}. Here, N is the number

of clusters of ESMs, and nj is the number of ESM members in each cluster. The

ensemble covariance matrix, Σ, is sampled from the normal distribution on the manifold

of covariance matrices. Furthermore, ε ∼ N (0, I) is the noise variance vector that

is sampled from a standard normal distribution. The parameters Σ̄ and Λ are the

mean and variance, respectively, of the ensemble of covariance matrices, as given in

Section 2.3.2.

Similar to Section 6.2, each Σi(θi) is a covariance matrix of individual ensemble

members, and θi is estimated using the MLE, i.e., θi = argmaxθL(θ, zi(x1), . . . , zi(xm)).

Note, there is a difference in the parameter estimation for the MVN and HD-MVN

model. In MVN, all ensemble members, and their input space points, are used to esti-

mate the parameters, while in HD-MVN, the parameters are estimated parallelly and

separately for each ensemble member. Hence, HD-MVN has a computational advantage

over MVN.

Additionally, in HD-MVN the weights of the samples are informed by clustering

similar covariance matrices on a manifold; this is in contrast to the MVN model. For

example, the mean estimates in the standard MVN model have weights that are either

constant or informed by a prior distribution of the input space points. In Figure 6.4, we

depict the effects of clustering, where the similar ESM members, as seen in Figure 6.2,
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Figure 6.4: An example of the climate model output cluster on a high-dimensional
manifold of covariance matrices. Such clusters inform the weights for the estimation of
the mean parameter of the sample distribution.

were clustered because they were close on a manifold of covariance structure. To clus-

ter the covariance matrices on a manifold, we used a standard hierarchical clustering

method with a criteria as follows: max{D(Σ1,Σ2) : Σ1 ∈ N1(Σi),Σ2 ∈ N2(Σj)} < τ .

The threshold, τ , was empirically chosen in our experiments. Here, N1 and N2 are two

sets of clusters, and the geodesic on the manifold of covariance matrices was given in

Section 6.4. Intuitively, the estimates of µ̂ and Σ̂ in the HD-MVN model incorporate

extra information about the structure of covariance matrices that the MVN fails to con-

sider. In Appendix B.2.2, Proposal Scheme 9, we outline the details of the HD-MVN

sampling procedure.

We validate our clustering method with the genealogy map of [21]. Furthermore, we

compare the geostatistical parameters from our new realizations with the MVN model’s

realizations using the experimental semi-variogram plots. Given the semi-variogram

function, one can estimate the parameters (range, sill, and nugget) of the covariance

function. Hence, the semi-variogram plot explained in detail in [102] is a good tool in

spatial statistics to visualize the differences in covariance matrices. The geostatistical
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tool of the semi-variogram plot is briefly described in Section 3. Finally, the patterns

of the new realizations are visually compared with the ensemble members to intuitively

see the validity of our proposed emulator for climate-related variables.

6.4 Application to Climate Datasets

6.4.1 Experimental Setup

To gain insight into the applicability of our proposed intermodel comparison and sta-

tistical emulation method, we used the ensemble of climate model outputs from CMIP5

experiments of future (2090) projections under various representative concentration

Pathways (RCP). For the experimental design and different Earth system modeling

groups included in CMIP5, see [49]. To test our method against various patterns in

climate model outputs, we selected one of the most poorly understood and simulated

climate variables: percent change in precipitation per degree of change in the global

mean temperature.

In this thesis, we restrict our study to the spatial dataset of the North American

region to analyze the regional spatial variability aspect of the climate model outputs.

Additionally, we have included single simulation runs from each of the ESMs, rather

than multiple simulations, to reduce biases in the ensemble. In Section 1.3, we provide

more details of the CMIP5 ensemble size and the RCP scenarios.1

6.4.2 Results

In Figure 6.5, we compare our proposed distance function (i.e., geodesic distance) for

intermodel comparison, as described in Section 6.2, and the multi-dimensional scaled

Euclidean metric, as described in [64]. In this figure, the rows and columns of the dis-

tance matrix plot represent the various ensemble members from CMIP5. Furthermore,

the darker the red color in each cell the further apart they are on the chosen distance

function’s space. The validity of the distance function can be implied by visualizing

the contrast in the two subfigures, i.e., Figure 6.5a and b. For example, Figure 6.5a

1The CMIP5 datasets are available at https://cmip.llnl.gov/cmip5/data_description.html

https://cmip.llnl.gov/cmip5/data_description.html
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(a) Euclidean Distance (b) Geodesic Distance

Figure 6.5: The distance matrix for the CMIP5 ensemble using the (a) Euclidean
distance between climate model outputs and (b) geodesic distance between covariance
matrices of climate model outputs.

shows little contrast across the cells, i.e., mostly dark red, implying that most of the

ensemble members are far from each other on the Euclidean space. On the other hand,

Figure 6.5b shows high contrast across the cells, i.e., some dark reds and some light

reds, implying that numerous dependencies were identified on the manifold of covariance

structure.

We further validate our proposed distance function (i.e., geodesic distance) for in-

termodel comparison in Figure 6.6. The climate model outputs from the same Earth

system modeling group are highlighted by the blue boxes and are known to have high

intermodel dependencies for reasons that include code and data sharing (see [21]). The

highlighted blue boxes show lighter shades of red, and, in turn, demonstrate that the

chosen geodesic distance function effectively compares and clusters climate model out-

puts in a non-parametric fashion.

To show the validity of the emulator’s new realizations of future projection for

various RCP scenarios, we use the experimental semi-variogram plots, as shown in

Figure 6.7. In this figure, the red lines represent the semi-variogram fit of the ESM’s

output, and the blue lines show the emulator’s realizations. The spread, depicted with

an ellipse, from the HD-MVN model’s realizations (Figure 6.7 b, d) is wider than the

MVN model’s realizations (Figure 6.7 a, c), especially for the RCP scenario of 2.6 and

4.5. For RCP 8.5, the spread from both methods,i.e., HD-MVN (Figure 6.7f) and

MVN(Figure 6.7e), are similar, because the underlying ensemble members have lower
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Figure 6.6: A representation of the proposed distance measure between climate model
outputs of the CMIP5 ensemble members. The proposed distance measure is a geodesic
distance between the fitted covariance matrix of individual climate model outputs.
Rows and columns of the above plot represent various climate model outputs from the
CMIP5 ensemble. Lighter shades of red represent higher similarity between models, and
boxes represent climate models that are validated to have high intermodel dependencies.

intermodel variability when compared to the other RCP scenarios. The wide spread in

the HD-MVN samples could be attributed to the sampling of the covariance matrices

from a manifold. Furthermore, HD-MVN’s realizations encompass the entire spread of

the underlying CMIP5 ensemble members. In comparison, the realizations from MVN

are small and encompass only a limited number of ESM members from the underlying

CMIP5 ensemble members’ spread. One reason for the MVN’s limited spread could

be the equally weighted mean estimate. Hence, implying that the HD-MVN model

represents the underlying distribution of the ensemble members better than the MVN

model.

In Figure 6.8, we further evaluate the spatial patterns of the emulator’s realizations

with respect to one of the CMIP5-RCP2.6 ensemble members, i.e., Geophysical Fluid

Dynamics Laboratory’s climate model output of GFDL-ESM2G. To compare the spatial
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Figure 6.7: Diagnostic plots showing the experimental semi-variogram function for vari-
ous climate model outputs from CMIP5 ensembles (red lines) and statistically generated
samples (blue lines) from the standard multivariate normal sampling method (MVN)
for the (a) RCP2.6 ensemble, (c) RCP4.5 ensemble, and (e) RCP8.5 ensemble. Re-
alizations from the proposed high-dimensional manifold sampling method (HD-MVN)
are shown for the (b) RCP2.6 ensemble, (d) RCP4.5 ensemble, and (f) RCP8.5 ensem-
ble. The ellipse in each plot focuses on the spread of the generated samples from each
sampling method.

patterns from each of the emulators, we chose the closest realization to GFDL-ESM2G
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Figure 6.8: Diagnostic plots show the spatial field of climate variables from the Geophys-
ical Fluid Dynamics Laboratory’s climate model output of GFDL-ESM2G (a CMIP5-
RCP2.6 ensemble member). The spatial field shown here is restricted to the North
American region. The figure shows the (a) climate model output from GFDL-ESM2G,
(b) closest realization (from Fig. 6.7(b)) using the high-dimensional manifold sampling
method (HD-MVN), (c) closest realization (from Fig. 6.7(a)) using the multivariate
normal sampling method (MVN), and (d) experimental semi-variogram plots associ-
ated with the depicted spatial fields. The coast is represented by black lines, and the
boxes represent patterns of similarity between the realizations and the climate model
output.

in the semi-variogram plot (Figure 6.8d) from among the thousands of generated real-

izations. Furthermore, the boxes in HD-MVN (Figure 6.8b) and MVN (Figure 6.8c)

represent the matching or non-matching patterns with respect to GFDL-ESM2G (Fig-

ure 6.8a). From visual inspection, we see that HD-MVN has more matching spatial

patterns when compared to MVN. Also, the semi-variogram fit from HD-MVN is closer

to GFDL-ESM2G than MVN. Hence, the aforementioned findings would indicate that

HD-MVN’s realizations are a better representation of the future projections’ spatial

patterns than the traditional approaches of MVN, and, thereby, it would be worth pur-

suing our proposed emulation method to compare and sample climate model outputs.
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6.5 Discussion

In this chapter, we proposed an approach to compare and emulate Earth’s future projec-

tions using the high-dimensional manifold representation of the existing ESM ensemble

members. Application of our method also finds its use in the problem of pattern scaling

(see [25]). Furthermore, in the experiments, we showed improvements from our pro-

posed approach when compared to the more traditional approaches of comparing and

simulation, such as Euclidean distance and MVN sampling scheme, respectively.

Due to the construction of the HD-MVN model, we also computationally benefit

from the parallel parameter estimation scheme, which can be useful when considering

global samples. To limit the scope of our implementation, we constructed a stationary

anisotropic Matérn covariance structure. However, it is straightforward to construct the

covariance structure using our previously proposed non-stationary covariance function

of HD-NSGP or DF-NSGP.

In our pilot experimental setup, we compared regional variability for precipitation

changes from a single global climate model (GCM) run of each ESM ensemble member.

However, there are multiple GCM runs for some of the ESMs in CMIP5. For example,

the CCSM4 model from NCAR provides several climate model outputs for various RCP

scenarios. These GCM runs have varying initial conditions, or perturbations. As we

were focused on the decadal scale regional precipitation variability in our experiments,

the spatial field from the various GCM runs had little variation. For completeness, it

would be useful to consider the multiple GCM runs on the manifold of covariance struc-

ture. This experimental setup can provide diagnostics, such as identifying redundancies,

by determining the intermodal and intramodal dependencies.

Interesting future work would be to analyze other climate-related variables’ future

projections from the ESMs’ output, such as temperature and climate sensitivity, ei-

ther separately or on a common manifold of covariance structures. Finally, one of our

limitations in the methodological development was the unavailability of ground truth

and the small ensemble size. Moving forward, to successfully develop machine learning
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approaches to compare and emulate, it would be useful to primarily focus on advanc-

ing the assessment procedures. Through this effort to develop a robust emulator and

comparison model, we can provide a comprehensive understanding of the uncertainties

in future climate projections.



109

Chapter 7

Concluding Remarks

7.1 Summary

In this thesis, we showed that modeling objects, such as geometric anisotropy and

the realizations of our future earth, on a high-dimensional manifold, can potentially

provide new insights for climate-related problems. In many fields, such as biomedical

imaging, the manifold construction has already shown promising results. However, in

climate modeling, this thesis provided novel contributions in the application of high-

dimensional manifolds to geostatistical estimation and simulation models. In particular,

we introduced high-dimensional manifold geostatistical models for the non-stationary

covariance function, data-fused covariance function, intermodel comparison, and a sta-

tistical emulator.

In Chapter 4, we provided an extension to a popular class of kernel convolution

non-stationary covariance functions (NSGP) (see [7, 8]). The extension was provided

by modeling the covariance function’s geometric anisotropic parameter on a Riemannian

manifold (HD-NSGP). The NSGP model, in [8], used GPs to estimate each of the pa-

rameters of an eigendecomposed geometric anisotropy matrix. This modeling approach

caused several issues including an over-smoothed realization, over-parameterized model,

and rapidly growing (w.r.t. the covariate space dimension) hyperparameters. To ad-

dress these issues, we modeled the SPD scale matrix in its intrinsic space, which is

endowed with a Rao’s Riemannian distance. To estimate the parameters of our model

we also provided suitable MCMC schemes. Furthermore, we proved that using these

intrinsic statistics preserves the smoothness and mean squared differentiable properties

of the non-stationary Gaussian process.

By modeling the non-stationary covariance function’s parameters in its intrinsic
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space, we enabled the spatially-varying scale matrix hyperparameters to grow in propor-

tion to the dimension of the covariate space. One could also employ clustering of geolo-

cations based on geophysics, or priors, to further reduce the number of hyperparameters.

Intuitively, such an HD-NSGP model allows for flexibility in the non-stationary model

by inducing regional stationarity in the stochastic process. A regionally non-stationary

model could be favorable when certain geolocations have few near-by records, or there

exists a dominant physical process influencing the specific region. Such situations are

common in many climate-related variables, such as sea-level changes.

To show the applicability of the HD-NSGP model, we created a novel simulation

function to generate a regionally-varying non-stationary process. Besides, we evaluated

various GP models on the spatial and spatiotemporal sea-level change datasets. In our

simulation study, we show that the MCMC chain from the HD-NSGP model mixes bet-

ter and faster than the NSGP model. Also, HD-NSGP was able to recover the regional

geometric anisotropy estimates, while NSGP provided an over-smooth estimate. For

both the simulation and sea-level datasets, we show that HD-NSGP outperforms the

NSGP model for various evaluation criteria. Finally, we also show that the estimation of

the geometric anisotropy clusters from the HD-NSGP model conforms with the known

geophysical regions around North America.

To further improve the estimates, primarily, when there are few near-by records, we

provided a data-fused non-stationary covariance function (DF-NSGP) (see Chapter 5).

The DF-NSGP model improves the estimates of the covariance function’s parameters,

such as geometric anisotropy, by leverages multiple sources of associated measurements.

The fusion technique we provided is an extension of our high-dimensional geostatistical

modeling approach wherein the geometric anisotropy from multiple datasets are esti-

mated on a manifold of SPD matrices. Similar to the HD-NSGP model, we proved that

DF-NSGP preserves the smoothness and mean squared differentiability properties of

the non-stationary Gaussian process. Furthermore, for the sea-level change datasets,

we showed that DF-NSGP outperforms various GP models that use single-sourced

datasets.

Next, in Chapter 6, we showed how the manifold approach can provide valuable
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diagnostic tools for high-dimensional climate-related problems. In particular, we pro-

vided a distance function to find the dependencies in the various Earth system models’

(ESM) future projections, or outputs. After establishing a manifold representation for

the ESMs’ outputs, we provided a novel statistical emulator model (HD-MVN). The

HD-MVN model is capable of generating an unbiased estimate from the ensemble of

ESMs’ outputs. For validating our distance function and the emulator model, we ran

experiments on the future (2090) projection of precipitation changes from the CMIP5

ensemble and for various RCP scenarios. Due to the nature of the problem, we have no

ground truth and small ensemble size. Hence, we compared our approach of considering

the covariance structure on a manifold with a more traditional previous approach of

point-wise modeling in the Euclidean space. For the intermodel comparison, we showed

that our distance function detects more of the known dependencies when compared to

the Euclidean distance. Similarly, when compared to a multivariate sampling (MVN)

model, the HD-MVN model provided a better representation of the future projection

of precipitation changes around North America.

In conclusion, this thesis provides original contributions in developing the geo-

statistical models for estimations and simulations. Furthermore, it provides a novel

application of intrinsic statistics on a Riemannian manifold for geostatistical models.

Using sea-level and precipitation change datasets, we showed the potential of the high-

dimensional manifold geostatistics approach to improve our understanding of physical

processes.

7.2 Shortcomings and Potential Improvements

In Sections 4.6, 5.4, and 6.5, we described specific shortcomings and suggested future

improvements relating to the proposed high-dimensional geostatistical models and their

applications to climate-related datasets. Here, we indentify several shortcomings and

suggest potential future directions that are common to all of the models proposed in

Chapters 4, 5, and 6.

One of the major challenges with spatial models, including the Gaussian process
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(GP), is their inability to handle large datasets. Recently, in the spatial statistics

literature, there has been a significant development in modeling for large datasets.

Some of the popular stationary spatial models for large datasets are the Lattice Kriging

(see [96]), Nearest Neighbor GP (see [97]), and stochastic PDE (see [118]). The main

idea to reduce the computational complexity in some of these spatial models is to model

the precision matrix, directly, instead of the covariance matrix. The development of

non-stationary spatial models for large datasets is a relatively new and ongoing research

area within the spatial statistics community. In advancing our non-stationary modeling

approach for large global datasets, it would be useful to estimate the regionally-varying

precision matrix parameters, for the aforementioned spatial models, on a manifold of

high-dimensional geometric structures.

Another aspect of the model development is to provide an estimation procedure that

uses the likelihood-based (MLE) schemes rather than resorting to the MCMC scheme.

MLE-based schemes are especially useful when considering inference from large datasets

and assessing uncertainties in the parameter estimation. A promising likelihood-based

estimation procedure for the non-stationary spatial model can be found in [113]. Our

non-stationary GP model was inherently based on the covariance structure defined on

two separate spaces: one on the input covariate space of the process and the second

on the manifold of geometric anisotropy object. Hence, a straightforward closed-form

solution of the likelihood function was unavailable. Hence, we resorted to a rather

ad-hoc MCMC scheme, which provided satisfactory results for both sampling the high-

dimensional objects from a distribution on a manifold and the posteriors of the GP

model. The intrinsic statistics of the first-order and second-order geometry on the

matrix manifold can be further optimized using the schemes presented in [85]. However,

a useful future exercise would be to work out a closed-form solution of the HD-NSGP

model to provide MLE-based schemes.

In this thesis, we primarily considered the canonical approach for the intrinsic statis-

tics on the manifold. All the same, there are many facets of the manifold construction,

such as the metric, connection, parallel transportation, and vector space, that can be

further improved computationally and theoretically. For example, the affine-invariant
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metric, or Rao’s Riemannian metric, which we used in all of our geostatistical models,

involves the expensive computational operation of matrix multiplications. An alternate,

computationally inexpensive, and approximate Riemmaian metric to circumvent the

matrix multiplications is proposed in [10]. This metric is also called the log-Euclidean

metric and is given as follows: D(Σ1,Σ2) = ‖ log(Σ1) − log(Σ2)‖2F . Furthermore, we

assumed a Levi-Civita connection of the tangent spaces a manifold. A potentially use-

ful assumption could be the α-connection (see [76]), or an algorithmically determined

arbitrary connection (see [84]), or a connection for discrete surfaces (see [142]). It would

be worth exploring various connections on a manifold and their effect on the estimation

of spatially-varying parameters for complex spatial processes.

Similarly, analyzing the effects of various vector spaces that represent a compactly

smooth manifold could potentially improve our HD-NSGP model. In our framework,

we restricted our algebraic computation on the tangent spaces of a canonical Rieman-

nian manifold. In the machine learning community, efficient vector spaces, such as the

Grassmannian manifold and Steifel manifold (see [79]), have shown promise in repre-

senting objects in their intrinsic high-dimensional space. In our future work, we could

explore such vector spaces and tailor them specifically to climate-related variables under

consideration.

In climate science, the observational datasets or records are unlike data in other

fields where the ground truth can be generated, such as in computer vision. For ex-

ample, we can create many variations of cat images for predicting objects in an image;

however, for predicting sea-level changes, the available tide gauge records are fixed and

limited. As a result of the relatively small amount of data available, numerous popular

machine learning methods, including Deep Learning, are yet to prove their effectiveness

for problems in climate science. Furthermore, due to the small data size in climate sci-

ence, the simulation study is an essential aspect of improving the models for prediction.

To show the validity of our approach for regionally-varying smooth process parame-

ters, we proposed a simulation study in Section 4.4. However, an extensive simulation

study that considers many more aspects of the complex climate-related processes, such

as teleconnection patterns (see [143]), could improve global spatial models. A useful
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future exercise would be to extend the simulation function and the HD-NSGP model to

comply with several known geophysics of the climate process. For example, we can algo-

rithmically cluster regional parameters with the neighborhood defined on the manifold

and the input space (i.e., geolocations) to identify the teleconnection patterns.

A relatively straightforward extension of our HD-NSGP model could include esti-

mating the regionally-varying and anisotropic noise and signal variance on a manifold.

In DF-NSGP, we showed a data-fusion method from two sources of datasets. This

model is flexible enough to include multiple sources of datasets. Furthermore, for the

intermodel comparison and emulation model, a useful application that could improve

our future projections of the climate variables would be to include multiple global cli-

mate models (GCM) runs, as well as numerous climate-related variables, on a common

manifold construction of climate model outputs. In general, all of the models presented

in this thesis is flexible enough to be applied to other climate-related variables, such as

precipitation, temperature, and climate sensitivity, for their estimation and simulations.

Thinking of geostatistics as points . . . I suppose can only take us so far. However,

thinking about geostatistical objects in high-dimensional spaces can surely provide us

with new insights and understanding, as attempted in this thesis. Regardless, can we,

or AI, truly comprehend the changes in the natural phenomena?
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carlo methods for spatial generalized linear mixed models,” Journal of Computa-
tional and Graphical Statistics, vol. 15, no. 1, pp. 1–17, 2006.

[132] J. J. Warnes and B. D. Ripley, “Problems with likelihood estimation of covariance
functions of spatial gaussian processes,” Biometrika, vol. 74, no. 3, pp. 640–642,
1987.

[133] H. Zhang, “Inconsistent estimation and asymptotically equal interpolations in
model-based geostatistics,” Journal of the American Statistical Association,
vol. 99, no. 465, pp. 250–261, 2004.

[134] O. Pasternak, N. Sochen, and P. J. Basser, “Metric selection and diffusion tensor
swelling,” in New Developments in the Visualization and Processing of Tensor
Fields. Springer, 2012, pp. 323–336.

[135] I. J. Good, “Rational decisions,” Journal of the Royal Statistical Society. Series
B (Methodological), pp. 107–114, 1952.

[136] P. D. Hoff and X. Niu, “A covariance regression model,” Statistica Sinica, pp.
729–753, 2012.

[137] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction, and
estimation,” Journal of the American Statistical Association, vol. 102, no. 477,
pp. 359–378, 2007.

[138] J. Hwang, S. Lay, M. Maechler, R. D. Martin, and J. Schimert, “Regression
modeling in back-propagation and projection pursuit learning,” Neural Networks,
IEEE Transactions on, vol. 5, no. 3, pp. 342–353, 1994.

[139] F. Richards, “A flexible growth function for empirical use,” Journal of experi-
mental Botany, vol. 10, no. 2, pp. 290–301, 1959.

[140] W. Peltier, “Global glacial isostasy and the surface of the ice-age earth: the ice-5g
(vm2) model and grace,” Annu. rev. earth planet. sci., vol. 32, pp. 111–149, 2004.

[141] F. Nielsen and F. Barbaresco, Geometric science of information. Springer In-
ternational Publishing, 2015.

[142] R. N. Zantout and Y. F. Zheng, “Determining geodesics of a discrete surface,” in
Multisensor Fusion and Integration for Intelligent Systems, 1994. IEEE Interna-
tional Conference on MFI’94. IEEE, 1994, pp. 551–558.

[143] J. M. Wallace and D. S. Gutzler, “Teleconnections in the geopotential height
field during the northern hemisphere winter,” Monthly Weather Review, vol. 109,
no. 4, pp. 784–812, 1981.



125

[144] B. Schutz, A first course in general relativity. Cambridge university press, 2009.

[145] V. I. Arnold, Mathematical methods of classical mechanics. Springer Science &
Business Media, 2013, vol. 60.

[146] Y. Sato, K. Sugawa, and M. Kawaguchi, “The geometrical structure of the param-
eter space of the two-dimensional normal distribution,” Reports on Mathematical
Physics, vol. 16, no. 1, pp. 111–119, 1979.

[147] C. Dodson and H. Wang, “Iterative approximation of statistical distributions and
relation to information geometry,” Statistical inference for stochastic processes,
vol. 4, no. 3, pp. 307–318, 2001.

[148] T. Imai, A. Takaesu, and M. Wakayama, “Remarks on geodesics for multivariate
normal models,” 2011B-6, 2011.

[149] W. Förstner and B. Moonen, “A metric for covariance matrices,” in Geodesy-The
Challenge of the 3rd Millennium. Springer, 2003, pp. 299–309.

[150] T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid with ap-
plication of nested equations,” Survey review, vol. 23, no. 176, pp. 88–93, 1975.

[151] I. Schoenberg, “Positive definite functions on spheres,” Duke Math. J, vol. 1, p.
172, 1988.

[152] T. Gneiting, “Strictly and non-strictly positive definite functions on spheres,”
Bernoulli, vol. 19, no. 4, pp. 1327–1349, 2013.



126

Appendix A

Model Formulations

A.1 Ricci Curvature Tensor

In Riemannian geometry, the curvature tensor, R, intuitively measures the extent to

which the neighborhood on a manifold deviates locally from the Euclidean space. The

curvature tensor is formulated using the parallel transport operations, which, in turn,

is defined with respect to the connection on a manifold (see [144, 145]). In our models,

we have chosen the canonical connection, i.e., Levi-Civita connection.

To set our notations, let the symmetric positive definite (SPD) space, S+(m,R),

of the covariance matrices, Σ = {σij}i≤j;i,j=1...m ∈ R
1
2

(m(m+1)), be parameterized as

follows: θ = {θi}i=1,...,m′ . Then, the four-indexed Riemannian curvature tensor cor-

responding to the Levi-Civita connection and Fisher information metric is given as

follows:

Rijkl = R(X,Y, Z, V )

=
1

4
tr
(
Y Σ−1XΣ−1ZΣ−1V Σ−1

)
− 1

4
tr
(
XΣ−1Y Σ−1ZΣ−1V Σ−1

)
, (A.1)

where X,Y, Z, V is the canonical basis vector field in the direction of Σ. This curvature

tensor has 1,296 components, and, for m = 3, there are 105 independent components

(see [77]).

Another way to describe the curvature tensor is through the sectional curvature

tensor, K. Intuitively, the sectional curvature is the curvature of a two-dimensional

section of the manifold. An even simpler formulation is given by the Ricci curvature

tensor. The Ricci curvature tensor, Ricci is a symmetric m′ ×m′ covariant tensor and

defined as a contraction of the Riemannian curvature tensor, R, with respect to the
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Riemannian metric, g. Intuitively, Ricci measures the growth rate of a metric and,

popularly, has played an important role in the Einstein field equations. Furthermore,

the Ricci scalar curvature, R, is defined as the trace of the Ricci curvature tensor.

For m = 2, the Ricci scalar curvature determines the sectional curvature tensor, and,

for m = 3, the Ricci curvature tensor completely determines the sectional curvature

tensor. Further details of the Ricci curvature tensor, Riemmanian curvature tensor,

sectional curvature, and Ricci scalar for the multivariate normal distribution (MVN)

can be found in [71, 91].

The components of the Ricci curvature tensor are expressed as follows:

Ricciij = Rijklg
kl, (A.2)

where gkl is the inverse of the metic. The Ricci curvature tensor is central to the

derivations of the intrinsic statistics on a Riemannian manifold. Furthermore, the

probability density function of the generalized normal distribution (see Equation 2.5)

includes the Ricci curvature tensor in computing its normalization factor. However, for

certain practical purposes, and in high-dimensions (m > 3), one can assume a locally

flat or Euclidean manifold (see Equation 2.6), or a scalar variance (see Equation 2.7),

to circumvent the computational burden of the Ricci curvature tensor.

The components of Ricci curvature tensor can be computed using any symbolic

algebraic softwares (such as Mathematica). For a bi-variate, m = 2, normal distribution

with the parameter space of θ = {θi}i=1,...5 = {µ1, µ2, σ11, σ12, σ22}, the components of

the metric tensor is given as follows (see [146]):

[gij ] =



θ5

∆
−θ4

∆ 0 0 0

−θ4

∆
θ3

∆ 0 0 0

0 0 (θ5)2

2∆2
−θ4θ5

∆2
(θ4)2

2∆2

0 0 −θ4θ5

∆2
θ3θ5+(θ4)2

∆2
−θ3θ4

∆2

0 0 (θ4)2

2∆2
−θ3θ4

∆2
(θ3)2

2∆2


, (A.3)

where the determinant ∆ = |Σ| = θ3θ5 − (θ4)2, and the Ricci curvature tensor is given
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as follows:

Ricci = [Ricciij ] =



−θ5

2∆
θ4

2∆ 0 0 0

θ4

2∆
−θ3

2∆ 0 0 0

0 0 (−θ5)2

2∆2
θ4θ5

∆2
θ3θ5−3(θ4)2

4∆2

0 0 θ4θ5

∆2
−θ3θ5+(θ4)2

2∆2
θ3θ4

∆2

0 0 θ3θ5−3(θ4)2

4∆2
θ3θ4

∆2
(−θ3)2)

2∆2


. (A.4)

Furthermore, the Ricci scalar curvature is given as follows: R = gijRicciij = −9/2.

For m = 3, zero-mean, MVN with the parameter space of θ = {θi}i=1,...6 =

{σ11, σ12, σ13, σ22, σ23, σ33}, the tensor components are more involved. Hence, we di-

rectly express the Ricci scalar curvature below (see [77]):

R = −0.03(51(θ1θ4θ6)3 − 99((θ2)6(θ6)3 + (θ3)6(θ4)3 + (θ5)6(θ1)3)−

161((θ1θ3θ6)2(θ4)3 + (θ5θ4θ6)2(θ1)3 + (θ1θ2θ4)2(θ6)3)+

209((θ1)3(θ5)4θ4θ6 + θ1(θ2)4(θ6)3θ4 + θ1(θ3)4(θ4)3θ6)−

221((θ1)2(θ2)2(θ5)4θ6 + 221θ1(θ2)4(θ5)2(θ6)2 + (θ1)2(θ3)2θ4(θ5)4)+

221(θ1(θ3)4(θ4)2(θ5)2 + (θ2)2(θ3)4(θ4)2θ6 + (θ2)4(θ3)2(θ6)2(θ4))+

306((θ1)2θ2θ3θ4(θ5)2(θ6)2) + 426(θ1(θ2)2(θ3)3θ4(θ5)2θ6)+

366((θ1)2(θ)2θ4(θ5)2(θ6)2 + θ1(θ2)2(θ3)2(θ4)2(θ6)2)+

366((θ1)2(θ3)2(θ4)2(θ5)2θ6) + 768(θ2θ3θ5)3

522((θ1)2θ2θ3(θ5)5 + (θ2)5θ3(θ6)2θ5 + θ2(θ3)5θ5(θ4)2)−

796(θ1θ2(θ3)3(θ4)2θ5θ6 + θ1(θ2)3θ3θ4θ5(θ6)2 + (θ1)2θ2θ3θ4(θ5)3θ6)+

940((θ2)3(θ3)3θ4θ5θ6 + θ1(θ2)3θ3(θ5)3θ6 + θ1θ2(θ3)3θ4(θ5)3)−

1056(θ1(θ2)2(θ3)2(θ5)4 + (θ2)4(θ3)2(θ5)2θ6 + (θ2)2(θ3)4θ4(θ5)2))/∆3,

(A.5)

where the determinant is ∆ = |Σ| = θ1θ4θ6 − θ1(θ5)2 − (θ2)2(θ6) + 2θ2θ3θ5 − (θ3)2θ4.

An alternative way to compute the identities of the Riemannian geometry is through

algorithmic approximations. One such iterative algorithm is described in [147].
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A.2 Distance Functions on a Statistical Manifold

The geodesic distance on a statistical manifold of SPD spaces has been addressed by

several authors, including [12, 68, 69, 73, 77, 78, 91, 148, 149]. One of the first known

expressions for the geodesic distance between members of the MVN family with a

common mean and different variance-covariance matrix was introduced in [90]. The

formulation of Equation 2.4, which we have used extensively in our geostatistical models,

is a result of [90, 91]. A smooth curve on the statistical manifold of MVN family is

given as follows:

dt2 = dµT Σ−1 dµ+
1

2
tr
(

(Σ−1 dΣ)
2
)
, (A.6)

where t ∈ [a, b], and the parameters µ and Σ describe the manifold of MVN family.

Then, the basic solution for the geodesic, D(·, ·), is to solve the system of differential

equations for the piecewise-wise smooth curves, or line segments, γ : [a, b] →M, on a

manifold, M, that satisfy the following conditions:

µ̈− Σ̇Σ−1µ̇ = 0, Σ̈ + µ̇µ̇T − Σ̇Σ−1Σ̇ = 0, (A.7)

where {˙} = d
dt . Assuming the Fisher information metric, as described in Section 2.2.3,

one can use the invariance under congruence transformation property to aid the above

solution of the differential equation. Further details of the proof for the geodesic on a

submanifold with a common mean, Mµ0 = {N (µ0),Σ)|Σ ∈ S+(m,R)}, can be found

in [91, Theorem 6.7].

A straightforward extension to the geodesic distance on a submanifold, Mdiag =

{N (µ),Σ)|Σ ∈ diag((λ1)2, . . . , (λm)2);µ ∈ Rm}, for the uncommon mean and diagonal

variance-covariance matrix can be written as follows:

Ddiag(P1, P2) = 2

m∑
i=1

cosh−2
((µi1 − µi2)2 + 2((λi1)2 + (λi2)2)

4λi1λ
i
2

)
, (A.8)

where Pi = N (µi,diag((λ1)2
i , . . . , (λ

m)2
i )). A more general solution of the geodesic

distance for an uncommon mean MVN family, and endowed with the Fisher information
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metric, is described in [65].

Some of the essential properties of this geodesic distance, which aided our geosta-

tistical model development, is enumerated below:

1. (Positivity) D(Σ1,Σ2) ≥ 0, and D(Σ1,Σ2) = 0⇔ Σ1 = Σ2

2. (Symmetry) D(Σ1,Σ2) = D(Σ2,Σ1)

3. (Triangle inequality) D(Σ1,Σ2) +D(Σ2,Σ3) ≥ D(Σ1,Σ3)

4. (Invariance under inversion) D(Σ1,Σ2) = D(Σ−1
1 ,Σ−1

2 )

5. (Invariance under transformation) D(Σ1,Σ2) = D(AΣ1A
T , AΣ2A

T ), A∀GL(m,R)

For further discussions on these properties and their proofs see [149].

A.3 Distance Functions for Spatial Processes

Many of the climate-related datasets are observed at geolocations, xi, on the surface

of the Earth. The canonical geographical coordinates are denoted as follows: xi =

(xlat
i , xlon

i )T . Furthermore, a canonical and accurate model of the Earth’s surface is an

ellipsoid. However, for spatial models, and excluding polar regions, an assumption of

a spherical geometry, Sm = {x ∈ Rm+1 : m ≥ 1, ‖x‖ = rad}, for the Earth’s surface is

sufficient.

The natural metric between two points, {xi,xj} ∈ Sm, for this spherical geometry

is the great circle distance (see [102]) and can be computed as follows: dgcd = rad4θ.
Here, rad ≈ 6371km is the radius of the earth and is usually assumed to be constant.

Furthermore, 4θ = arccos(〈xi,xj〉) is the central angle between the geolocations, and

is measured in radians, where 〈xi,xj〉 is the inner product in Rm. A computationally

favorable formulation (see [150]) for the central angle is given as follows:

4gcdθ = atan 2


√

(cos(φ2) sin(∆))
2

+ (cos(φ1) sin(φ2)− sin(φ1) cos(φ2) cos(∆))
2

sin(φ1) sin(φ2) + cos(φ1) cos(φ2) cos(∆)

 , (A.9)

where ∆ = |xlonj −xloni |, φ1 = xlati , and φ2 = xlatj . Using the great circle distance metric

for modeling processes on a sphere violates the positive definiteness of certain covariance
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functions (see [151]), including the non-stationary Matérn covariance function, as given

in Equation 3.12 (see [8]).

In spatial statistics, many of the popular covariance functions, including the Matérn

function, are defined on the Euclidean space. Hence, in practice, using the standard

Euclidean metric, de = ‖x−x′‖, for distances less than 2000km apart usually provides a

reasonable model for the local behavior of the process (see [105]). However, for far apart

distances standard Euclidean distance leads to overestimation. An alternative natural

metric for a valid covariance function on a sphere can be expressed as the Euclidean

metric in terms of the great circle distance. This metric is also known as the chordal

distance and is given as follows: 4chordθ = 2 sin(4gcd/2).

For far apart distances, the chordal distance provides a better approximation for

the local behavior when compared to the Euclidean distance. Nevertheless, the chordal

distance still leads to underestimation (see [105]) and, in some cases, an unrealistic

physical model (see [152]). Analysis of various metric arguments for the covariance

functions on a sphere has been considerably studied in [105]. In our experimental

setup, we found that the chordal distance provided satisfactory results for the stationary

covariance function.

For the spatially-varying non-stationary covariance function, the kernel convolution

argument of Equation 3.13 hinders the direct application of the chordal distance. In [8],

an ad-hoc site-adaptive distance is applied. An alternative site-adaptive distance, also

called the centroid-based method, which performs similar to the aforementioned chordal

distance, is recommended in [105]. For our non-stationary models we apply the centroid-

based method to transform the geographical coordinates to their planar projections and

compute the distances using the standard Euclidean metric. The transformation is given

as follows:

φ′1 =
φ1 − φ̄1

max(φ1)−min(φ1)
∆1, φ′2 =

φ2 − φ̄2

max(φ2)−min(φ2)
∆2, (A.10)

where {φ̄1, φ̄2} is the centroid, or the mean, of latitude and longitude values from the
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given dataset. Furthermore, {∆1,∆2} is the great circle distance computed from Equa-

tion A.9 and between the points {(φ̄1,min(φ2)), (φ̄1,max(φ2))} and {(min(φ1), φ̄2),

(max(φ1), φ̄2)}, respectively. One of the disadvantages of the site-adaptive method

is that new data points would require a re-computation of the projections. Hence,

in large data climate monitoring systems site-adaptive distances might not be feasi-

ble. In our experiments for the non-stationary covariance functions, we found that the

centroid-based method performed only marginally better than the distance procedure,

as described in [8], and the standard Euclidean metric.
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Appendix B

Numerical Schemes

B.1 Intrinsic Statistics on a Riemannian Manifold

B.1.1 Log Map

The Riemannian log map is numerically calculated using Algorithm 6 and is further

described in [78, 82].

Algorithm 6: Computing the logarithmic map, LogΣ1
(Σ2), on the Riemannian man-

ifold.

Input: Start point, Σ1; end point, Σ2 ∈ S+(m,R)

Output: LogΣ1
(Σ2) . Riemannian logarithmic map

1: SVD(Σ1)→ Γ1D1ΓT1 . Singular value decomposition

2: g = Γ1

√
D1

3: Σ̂ = g−1Σ2g
−T

4: SVD(Σ̂)→ Γ2D2ΓT2

5: LogΣ1
(Σ2)← (gΓ2) log (D2)(gΓ2)T

The Riemannian exponential map, ExpΣ1
(Σ2), is the inverse of the Riemannian log

map. Hence, using a similar diagonalization scheme as in Algorithm 6, we can compute

ExpΣ1
(Σ2).

B.1.2 Mean and variance

The Fréchet intrinsic mean on a Riemannian manifold, as described in Equation 2.9,

can be computed using the standard gradient descent minimization scheme, as outlined

in Algorithm 7.
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Algorithm 7: Computing the intrinsic mean, Σ̄, on the Riemannian manifold.

Input: {Σ1, . . . ,ΣN} ∈ S+(m,R)

Output: Σ̄ ∈ S+(m,R) . Riemannian intrinsic mean

1: Σ̄0 = Σ1 . Initial mean estimate

2: γ = 1 . Initial step size

3: while µ2
Fi
> ε do . ε is a very small value

4: Σ̂i = 1
N

∑N
k=1 LogΣ̄i

(Σk) . Σ̂i is the candidate of the intrinsic mean, and

is computed on the tangent space at Σ̄i

5: µ2
Fi

= 1
N

∑N
k=1 ‖LogΣ̄i

(Σk)‖2F . µ2
Fi

is the intrinsic mean function, which is to

be minimized
6: Σ̄i+1 = ExpΣ̄i

(γΣ̂i) . Σ̄i+1 is the projection from the tangent space

at Σ̄i to the manifold space, and is traversed

at a distance, γ, along the geodesic flow
7: if µ2

Fi
> µ2

Fi+1
then

8: Σ̄i = Σ̄i+1

9: γ = γ/2 . Reduce the step size

10: end if

11: end while

Using the intrinsic mean, as given in Algorithm 7, and the Logarithmic map, as

given in Algorithm 6, we can compute the intrinsic variance, ΛΣ̄, as described in Equa-

tion 2.11.

B.2 High-Dimensional Manifold Geostatistical Models

B.2.1 High-dimensional Manifold Non-stationary Gaussian Process

Proposal Scheme 8 outlines an alternative high-dimensional manifold non-stationary

Gaussian process (HD-NSGP) parameter estimation procedure. This scheme leverages

an existing sampling scheme of posterior mean sampling, as described in [8], and algo-

rithmically estimates the regional aspect of the spatially-varying geometric anisotropy

for the HD-NSGP model.
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Proposal Scheme 8: An alternative scheme for the spatially-varying geometric
anisotropy, or scale matrix parameters, θΣ = {|r|, Σ̄,Λ}.

1: Initialize Σ(x) from the GP processes and use the PMC sampler, as given in [8].

2: Sample |r| ∼ U{1, n} either uninformatively by using a uniform discrete distribution

or informatively by using the geophysics of the climate variable. Alternatively,

sample τ|r| ∼ N (0, 1) such that tr(Λ(Σi=1,...,Σ|r|)) ≤ τ2
|r|, where Λ is computed on the

SPD manifold using Equation 2.11.

3: Represent the regionally-varying scale matrix parameter using the intrinsic mean

on the SPD manifold, i.e., Σ̄r(i) = µ2
F (Σi=1, . . . ,Σ|r|) as given in Equation 2.9.

B.2.2 High-dimensional Manifold Multivariate Normal Sampling

Proposal Scheme 9 outlines the high-dimensional manifold multivariate normal (HD-

MVN) sampling procedure, as introduced in Chapter 6.

Proposal Scheme 9: For simulating future projections, z̃, from climate model out-
puts.

1: Estimate {Σ1, . . . ,Σn} using Scheme 5.

2: Estimate clusters, N , on a manifold of covariance matrices, using the following

proximity criteria: max{D(Σ1,Σ2) : Σ1 ∈ N1(Σi),Σ2 ∈ N2(Σj)} < τ , and a stan-

dard hierarchical clustering method. The choice of the threshold, τ , is vague but

proper. For our experiments, we chose τ = 2.

3: Estimate weighted mean, µ̂, for the process, Z, using Equation 6.1b.

4: Estimate weighted mean of the covariance matrices, Σ̄, and its associated variance-

covariance matrix, ΛΣ̄, using intrinsic statistics on a manifold.

5: Sample covariance matrices, Σ̂, for the process, Z, using Equation 6.1c.

6: Sample a new realization, z̃, using Equation 6.1a.
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Appendix C

Notations

Acronyms

IPCC Intergovernmental Panel for Climate Change

ESM Earth System Model

CCSM Community Climate System Model

CMIP5 Coupled Model Intercomparison Project - 5

GPCP Global Precipitation Climatological Project

PSML Permanent Service for Mean Sea Level

RCP Representative Concentration Pathways

GHG Greenhouse Gas

GIA Glacial-Isostatic Adjustment

TG Tide Gauge Stations

GMSL Global Mean Sea Level

ReSL Regional Sea-Level changes

RSL Relative Sea-Level Changes or Trends

LMSL Local Mean Sea-level Changes or Trends

HDM High-Dimensional Manifold

GP Gaussian Process (in Machine Learning) or Kriging (in Geostatistics)
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PCA Principal Component Analysis

EOF Empirical Orthogonal Functions

SVD Singular Value Decomposition

IRF Intrinsic Random Function

MCMC Markov Chain Monte Carlo

MLE Maximum Likelihood Estimation

PDF Probability Density Function

MSE Mean Square Error

NLPD Negative Log Predictive Density

CRPS Continuous Rank Probability Score

STD Standard Deviation

TGP Gaussian Process with Ground Truth Parameters

KNN K-Nearest Neighbor Model

SGP Stationary Gaussian Process model

NSGP Non-Stationary Gaussian Process

HD-NSGP High-Dimensional Manifold Non-stationary Gaussian Process model

DF-NSGP Data-Fusion Manifold Non-Stationary Gaussian Process model

HD-MVN High-Dimensional Multivariate Normal Sampling Scheme

Indices and Coordinates

Ξ Set of coordinate systems

[ξi(p)] = [ξi] Coordinates of a point, p, on a manifold

∂
∂ξi

Natural basis of the coordinate system [ξi]
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si, si Subscript refers to the dimension in the input space, Rn

xi(s) Superscript refers to the dimension in the covariate space, Rm

{x∗, y∗} Test data points

{x, y} Training data points

ỹ New sample, or realization, of the variable y

ȳ Mean value of the variable y

ŷ Estimates, or samples, of the variable y

θiΣ The superscript on the parameter, θ, represents an element of the parameter

space at a particular level of the model hierarchy; the subscript represents the

associated parameter, or process, at a level above in the hierarchy

θΣ A set of parameters, {θiΣ}, for modeling a parameter, or process, Σ, that is a

level above in the model hierarchy

{θiΣ}s Each parameter in the set, {θiΣ}, is evaluated at each of the geolocations, s

θest Set of parameters to be estimated

θtotal Set of all of the parameters in the model

θlevel=i Set of parameters to be estimated at a level, i, in the model hierarchy

Operations

∇ Vector differential operator

〈·, ·〉 Inner product

⊕ Tensor addition on a manifold

� Tensor product on a manifold

tr(Λ) Trace of a matrix Λ

|Λ| Determinant of a matrix Λ
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, Variable or notation assignment

≡ Equivalent by definition

Variables and Parameters

s Geographic locations or geolocations, i.e., s = {s1, . . . , sn}

x Locations in the covariate or feature space

m Dimensions of the covariate space (in statistics) or feature space (in machine

learning)

n Number of geolocations

dim Dimension of the process, or the physical space of the geolocation s

Z(s) Random variable at geolocations s

Y (s) observation at geolocations s

ε(s) Noise variable at geolocations s

p, q Point on a manifold

lat, lon Latitude, longitude

st Transformed geolocation

θ Set of parameters of a function

λ Set of eigenvalues of a matrix

{u, v} Elements of the eigenvector matrix

s2, σ2 Scalar variance

rinj Injectivity radius

r Range parameter of the semi-variogram model

σ2
Z Signal variance for the covariance function
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σ2
Y Noise variance for the covariance function

ν Smoothness parameter of the Matérn function

l Characteristic length scale

h Interpoint distance between geolocations

ψA Geometrical anisotropy angle

ψR Geometrical anisotropy ratio

µ Mean of a distribution

σ2
Σ Empirical Riemannian scalar variance for Riemannian mean, Σ

kG, kSG, kscG Normalization factor for fG, fSG, fscG

R Ricci scalar curvature

Surr Surrogate source of the dataset

Matrix and Vectors

A Affine matrix

Σ Symmetric positive definite matrix; Contextually, Σ either represents a geomet-

ric anisotropic matrix or a covariance matrix

L Lower triangular matrix such that LLT = Σ

K Covariance matrix

1 Vector of ones

I Identity Matrix

D Diagonal matrix of eigenvalues

Γ Rotational matrix or matrix of eigenvectors

H Matrix computed using the correlation function
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Q Scaled distance matrix of dimension s ∈ Rn

X Tangent vectors

Λ Standard variance-covariance matrix for MVN family of probability distributions

on a statistical manifold

ΛR Riemannian variance-covariance matrix for MVN family of probability distribu-

tions on a statistical manifold

ΛΣ Empirical Riemannian variance-covariance matrix for Riemannian mean, Σ

Ricci Ricci curvature tensor

R Riemannian curvature tensor

K Sectional curvature tensor

β Tangent vector on a statistical manifold

Functions

Cov(·, ·) Covariance

V ar(·) Variance

Corr(·, ·) Correlation

E(·) Expectation of a distribution

V (·, ·) Variogram function

k(·), k(·, ·) Stationary covariance function, non-stationary covariance function

ρ(·), ρ(·, ·) Stationary correlation function, non-stationary correlation function

ρS(·) Stationary correlation function

ρNS(·, ·) Spatially-varying non-stationary correlation function

ρHDNS(·, ·) Spatially-varying high-dimensional manifold non-stationary correlation func-

tion
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ρDFNS(·, ·) Spatially-varying data-fused non-stationary correlation function

q(·, ·) Scaled distance function between s and s′

Kν(·) Modified Bessel function of second kind of order ν

Mν(·) Matérn covariance function

Γ(·) Gamma function

Σ(·) Symmetric positive definite matrix function

Σij Geometrical anisotropy model that is a function of a pair of geolocations, i.e.,

Σ(si, sj)

r(i) A function that identifies the region on the arbitrary space associated to the

location si in the input space

dgcd(·, ·) Great circle distance

de(·, ·) Standard Euclidean distance

d(·, ·) Arbitrary distance function

g(·, ·) Riemannian metric

D(·, ·) or dg(·, ·) Riemannian distance function

L(γ) Length or norm of a curve γ

γ(·) Curve on a manifold

Exp or expΣi(Σj) Exponential map from Σi to Σj

Log or logΣi(Σj) Logarithmic map from Σi to Σj

exp(·), log(·) Exponential function, logarithmic function

fG(·) Probability density function for a generalized normal distribution

fSG(·) Probability density function for a simplified generalized normal distribution
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fscG(·) Probability density function for a generalized normal distribution with scalar

variance, σ2

erf(·) Error function

µF (·) Fréchet mean function

I Indicator function

L(·) Likelihood function

O(·) Big oh notation, i.e., for f(·), g(·) ∈ N, f(n) = O(g(n)), if f(n)
g(n) is bounded as

n→∞

x(s) Coordinate transformation to the covariate space

Distributions

{Z(s)} Stochastic process

MVN(·, ·) Multi-variate normal distribution

N (·, ·) Normal distribution

U(·, ·) Uniform continous distribution

U{·, ·} Uniform discrete distribution

IG(·, ·) Inverse gamma distribution

GP(·, ·) Gaussian process

p(x; θ) Probability model for x parameterized by θ

η(·) Noise distribution

w(·) White noise process

Spaces

A Set of coordinate systems
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R,N Set of real numbers, Set of natural numbers

A1 Affine subspace

I Arbitrary input space

B Borel field

X Set of probability distributions

{pξ} Family of probability distributions with coordinates [ξ]

{p(·|Σ)} MVN family of probability distributions

G Set of points that lie on a globe

M Manifold of a set of points that are symmetric positive definite matrices

S Manifold of a set of points

S(m) Manifold with dimension m

SPD Symmetric positive definite space

Sm Sphere of dimension m

S+(m,R) Statistical manifold of MVN family of distributions with fixed or zero mean

and variance-covariance matrix of dimension m

TΣiM Tangent space at point, Σi, on a manifold, M

SO(m) Special orthogonal group of dimension m

GL(m,R), gl(m,R) Lie group, lie algebra of dimension m with entries in R

O(m) Orthogonal group of dimension m

C∞ Infinitely many times differentiable
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